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Abstract Sum-of-square based error formulations may be difficult to implement
on an inverse analysis consisting of multiple tension-compression hysteresis loops.
Five alternative measures of similarity between curves are investigated as useful
tools to help identify parameters from hysteresis loops with inverse analyses. A
new algorithm is presented to calculate the area between curves. Four additional
methods are presented from literature, which include the Partial Curve Mapping
value, discrete Fréchet distance, Dynamic Time Warping, and Curve Length ap-
proach. These similarity measures are compared by solving a non-linear regression
problem resembling a single load-unload cycle. The measures are then used to
solve more complicated inverse analysis, where material parameters are identified
for a kinematic hardening transversely anisotropic material model. The inverse
analysis finds material parameters such that a non-linear FE model reproduces
the behavior from five experimental hysteresis loops. Each method was shown to
find useful parameters for these problems, and should be considered a viable al-
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ternative when sum-of-square based methods may be difficult to implement. It is
important to consider multiple similarity measures in cases when it is impossible
to obtain a perfect match.

Keywords inverse analysis · material parameter identification · hysteresis loops ·
tension-compression response · similarity measures · goodness of fit

1 Introduction

The calibration of model parameters to find models which reproduce experimen-
tal hysteresis tension-compression cycles is difficult. There are a wide variety of
material models implemented in commercial finite element (FE) software. Unfor-
tunately the selection of appropriate parameters for these models is not a simple
process, despite the advancements in experiential methods, constitutive models,
and the FE method. In some applications constitutive parameters can be deter-
mined by a curve fit from experimental data as done with a number of generalized
polynomial strain energy models [1]. Alternatively full-field displacement methods
provided by non-invasive optical techniques have been used with the virtual fields
methods to identify constitutive parameters [2, 3]. Another solution has been to
use an inverse analysis to identify material parameters in a process of updating a
FE model, where material parameters are determined such that the FE model’s
response best replicates an experiment. The focus of this paper is on the objective
function that quantifies the quality of fit between two different responses.

In this context an inverse analysis refers to the process of using optimization
to minimize the difference between experimental data and a numerical model’s
response. Some objective function is used to quantify the differences between re-
sponses. A few of the first works related to inverse analysis to determine material
parameters include [4, 5, 6, 7, 8]. For various hysteresis and hardening parame-
ter identification problems, objective functions based on the sum-of-squares have
been used. While the use of a sum-of-squares objective function is widely estab-
lished, other similarity measures may be easier to work with when dealing with
experimental hysteresis loops.

It is well-established to use a sum-of-square based objective function with in-
verse analysis to identify material parameters. Lederer et al. [9] used a root means
square quality function to measure the difference between experimental and nu-
merical magnetic hysteresis curves. Haddadi et al. [10] used a form of mean square
error as the cost function to identify kinematic hardening and micro-structural
model parameters. The mean square error compared the difference of stress and
hardening rates between a FE model and experimental data. Eggertsen and Mat-
tiasson [11] used a weighted mean square error to identify material parameters for
hardening laws with an inverse analysis. Harth et al. [12] described using a weighted
sum of differences between experimental and numerical models to identify the op-
timum material parameters for inelastic constitutive models. Rabahallah et al.
[13], Souto et al. [14], Yoshida et al. [15] used a weighted sum-of-squares objective
function to identify material parameters from inverse analysis on hysteresis loops.
De-Carvalho et al. [16] concluded that a weighted sum-of-squares objective func-
tion was more appropriate than a single point objective function for complicated
geometric phenomena including necking, springback, and stress concentration.
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A typical sum-of-squares is defined as

SS =
n∑

i=1

(
f(xi) − f̂(xi)

)2

(1)

where f is the experimental data, f̂ is the numerical model, and the difference is
taken at the same xi condition. Often differences in stress between the experimen-
tal and numerical data are calculated for the same strain values [10, 14, 16, 17, 18].

Now consider the simple example in Fig. 1 of some potential noisy material
load-unload response accompanied with a numerical model that replicates that
response. Initially in (a) it may appear trivial to apply the sum-of-squares, though
when zooming into the data as shown in (b) it appears that the experimental data
does not share mutual strain or stress values in order to calculate the sum-of-
squares. There is essentially no concurrent xi to calculate the difference between
the experimental data and numerical model.

0.0 0.2 0.4 0.6 0.8 1.0

Strain (mm/mm)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

S
tre

ss
(G

P
a)

Experimental data
Numerical model

(a) Complete data

0.900 0.925 0.950 0.975 1.000 1.025 1.050 1.075 1.100

Strain (mm/mm)

1.50

1.55

1.60

1.65

1.70

1.75

S
tre

ss
(G

P
a)

Experimental data
Numerical model

(b) Area of interest

Fig. 1 Example of a potential material load-unload response and the numerical model repli-
cation of the response where (a) shows the complete data while (b) shows a zoomed-in area of
interest and the order of the experimental data points.

A tension-compression-tension test with experimental data and the results from
a numerical model is shown in Fig. 2. There exists some set of numerical model
parameters which will result in the numerical curve aligning with the experimental
curve exactly. Often, an optimization is run to find the best set of parameters that
minimize the error between two curves. Traditionally the error has been defined as
a sum-of-square based objective function. However, in this case it is not possible
to directly apply a sum-of-squares function to quantify the difference between the
numerical model and experimental data. One problem is that there are a different
number of data points on the experimental curve than the numerical curve. Ad-
ditionally, there are no concurrent stress or strain values to take a difference of as
required by a sum-of-squares function. An alternative objective function is needed
to measure the similarity between the two curves.

Several other methods have been proposed in response to the shortcomings of
using sum-of-squares to identify parameters from hysteresis loops. These methods
will be discussed in detail in Section 2. A new algorithm to calculate the area
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Fig. 2 Assessing the quality of the numerical model’s match of the experimental response is
difficult for material tension-compression-tension curves.

between curves is proposed and compared with other measures of similarity from
literature. The area algorithm is compared to the discrete Fréchet distance, Dy-
namic Time Warping (DTW), Partial Curve Mapping (PCM), and a Curve Length
based objective function. The measures of similarity are minimized on simple prob-
lems where it is impossible for the model to match the data exactly. Additionally,
these measures are used as the objective function in an inverse analysis to de-
termine material parameters for a kinematic hardening transversely anisotropic
material model. The resulting FE models replicate the experimental data from
five hysteresis tension-compression loops. Artificial noise is added to the problems
to demonstrate the robustness of the measures to noise, and to help distinguish the
measures in an events where it is impossible to match experimental data exactly.

2 Methodology

Inverse analysis have been used to identify material parameters for numerical
models [10, 11, 12, 13, 14, 15, 19, 20]. In general some experiment was conducted
on a material (e.g. a load-unload uniaxial test, or tension-compression test). Then
a numerical model was created which replicates the physical conditions of the test
(e.g. an appropriately constrained FE model). In the case of using a FE model,
this process has been referred to as the FE model updating (FEMU) method [21].
An inverse analysis determines parameters of the numerical model by minimizing
the difference between experimental data and the response of the numerical model.
Optimization is used to find the parameters by minimizing an objective function
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which describes the quality-of-fit from the collection of parameters. Traditionally
the objective function has been based on a sum-of-squares error formulation when
using an inverse analysis to find material parameters. This work explores using
Partial Curve Mapping (PCM), Area between curves, discrete Fréchet distance,
Dynamic Time Warping (DTW), and a Curve Length objective function proposed
by Andrade-Campos et al. [22] as measures of the similarity between two curves
for inverse analyses.

It is important to distinguish between the inverse analyses that require a FE
model to continuously update, and non-linear regression problems which param-
eters are identified from curve fits to experimental data. There are a number of
generalized polynomial strain energy models (including MooneyRivlin and Ogden
hyperelastic material models) which can be identified from curve fits [1]. Addi-
tionally, Martins et al. [23] used non-linear regression to determine properties of
various hyperelastic models for soft tissues.

There have been a variety of optimization techniques used to solve inverse
analysis and non-linear regression problems, including both stochastic and deter-
ministic optimization methods [24]. The focus of this work is to present a collection
of objective functions that may be particularly useful when performing an inverse
analysis to identify material parameters from hysteresis loops. Thus any optimiza-
tion technique could be used, assuming the result is close to the global optimum.
It is worth to note that different optimization techniques which appear to solve
some inverse analyses well, may struggle on other particular inverse problems as
principle of the No Free Lunch theorem [25]. LS-OPT R© [26], a general purpose de-
sign optimization and probabilistic analysis toolbox, was used to solve the inverse
analyses for this study.

Three problems are proposed and solved in this paper by minimizing the PCM,
Area, discrete Fréchet, DTW, and Curve Length measures. The first problem il-
lustrates the differences between these similarity measures and a traditional least
squares fit when fitting a line to quadratic data and fitting a line to data with
an outlier. The second problem is a non-linear regression problem invented to il-
lustrate finding material parameters from a single load-unload cycle. The third
problem is an inverse analysis to identify material parameters for a kinematic
hardening model. Separate optimizations are performed using either the PCM,
Area, discrete Fréchet, DTW, or Curve Length similarity measures as the objec-
tive function. The intention is to demonstrate how each measure may be useful
when identifying material parameters. The methodology goes on to describe the
PCM, Area, Fréchet, and DTW measures of similarity between two curves. It is
important to note that the order of the data points is important for these meth-
ods1.

2.1 Partial Curve Mapping

The Partial Curve Mapping (PCM) method was proposed by Witowski and Stander
[27] to identify material parameters with inverse analyses. PCM uses a combina-
tion of arc-length and area to determine the similarity between curves, because

1 Initially consider two identical curves discretized by identical data points. All of these
measures of similarity would return a value of zero. Now reverse the order of the data points
on one curve, and then all of these measures would return a large value.

https://doi.org/10.1007/s12289-018-1421-8
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sometimes the choice of parameters changes the overall curve length. An example
of where an experimental curve and numerical curve have different overall lengths
is seen in the material tension-compression-tension test of Fig. 2. First the arc-
length of the shorter curve is imposed onto a section on the longer curve. Then
trapezoids are constructed between the curves, and the areas of the trapezoids
are summed. This is repeated for 200 or so iterations, as various offsets of the
short arc length are imposed on the curve with the longer arc length.2 Trapezoids
constructed between two curves for an arbitrary offset can be seen in Fig. 3. The
final PCM value is the minimum area from all attempted arc-length offsets.

Trapezoid
Experiment data
Numerical model

Added point
Offset

Fig. 3 The PCM method constructs trapezoids between the two curves for every possible
offset.

The PCM algorithm is implemented in LS-OPT and has been used to calibrate
a variety of material parameters. Venter and Venter [28] used the PCM method
with an inverse analysis to calibrate a hybrid material model capable of reproduc-
ing the orthogonal load-unload response for plain woven polypropylene. ul Hassan
et al. [20] used the PCM method to calibrate material parameters for the same
kinematic hardening model (MAT 125) used in Section 3.3. In LS-OPT PCM is
referred to as a curve matching algorithm [26].

Though the PCM method has proven a useful tool for material calibration
problems, there are some limitations. The PCM method performs poorly when
the data has noise, as noise artificially increases the arc length. The LS-OPT

2 Arc lengths can be iterated such that for the first iteration the arc length of the longer
curve is only considered from the beginning of the data to the end of the arc length on the
shorter curve. The next iteration would again consider only the shorter arc length of the longer
curve, but only after some offset from the beginning of the longer curve. The process is repeated
until an offset is used such that the last data point of each curve is considered.
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manual recommends to reduce noisy data with a filter prior to using the PCM
method [26].

2.2 Area between two curves

Two curves are generally discretized into a time-series of ordered data points.
An algorithm is proposed in this paper to approximate the area between two
curves. The algorithm constructs quadrilaterals between two curves and calculates
the area for each quadrilateral. The details of the area algorithm is presented in
Appendix A.

Two curves that are being compared require the same number of points in
order to construct quadrilaterals to approximate the total area between curves. If
one curve has fewer data points than the other curve, data points are added until
both curves have the same number of data points. It was chosen to add, rather
than remove points to avoid any loss of information for general problems. While
there are many ways to add artificial data points to the curve, a simple approach
was taken which adds an artificial data point by bisecting two points. The location
for the bisection was chosen based on the largest Euclidean distance between two
consecutive points. Points are added to the curve in this fashion until both curves
have the same number of points.

Polygons assume that there is a straight line between any two points. This
straight line assumption is important, because adding additional points through
the linear interpolation doesn’t change the area between the two curves. For in-
stance you can split a pentagon into two quadrilaterals, and the area of the two
quadrilaterals will be exactly equal to the area of the pentagon. The adding of
additional points is just used to aid in the facilitation of the area approximation.
As the number of data points on both curves increases, so does the accuracy of
the area approximation.

A simple demonstration of the Area method is shown in Fig. 4, where quadri-
laterals are constructed between experimental and numerical data. The numerical
simulation yields four data points while the experimental data has five points. An
artificial data point was added to the numerical data by bisecting the two consec-
utive points with the largest Euclidean distance, such that both curves have the
same number of points. Four quadrilaterals are then created between the curves
by taking consecutive pairs from each curve. Since each quadrilateral is a simple
quadrilateral, Gauss’s area formula is used to calculate the area of each quadri-
lateral. The quadrilateral areas are summed to give the effective area between
curves.

The area between two curves is a positive value (A ≥ 0). This is true even
when the two curves considered cross each other. It is possible for a curve that is
slightly above the desired curve to have the same value as a curve that is slightly
below the desired curve. Whether the curve is over or under the desired curve
doesn’t matter, however what does matter is the amount of mismatch between the
two curves. Minimizing the area between the two curve results in minimizing the
amount of mismatch between two curves.

https://doi.org/10.1007/s12289-018-1421-8
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Fig. 4 The Area between two curves is approximated by summing the quadrilaterals. An
artificial point is added to the numerical model, such that both curves have the same number
of points.

2.3 Fréchet distance

The Fréchet distance is a measure of similarity between curves which preserves
the time-series order of data along the curves. The measure was first defined in
Fréchet’s PhD thesis [29]. Intuitively the Fréchet distance has been described as
the length of a leash in a walking dog problem. Suppose a man is walking a dog,
where the man is constrained to stay on one curve and the dog on another. The
man and dog can vary their velocities independently at all times. Both the man
and the dog are limited to either moving forward or stopping along their curves,
as it is forbidden for them to move backwards. The Fréchet distance reflects the
shortest possible leash connecting the man and dog sufficient to complete the walk
along the curves.

Eiter and Mannila [30] described an algorithm to approximate the Fréchet dis-
tance by considering the line segments between the end points of two polygonal
curves. This algorithm is referred to as the discrete Fréchet distance, or the cou-
pling distance. If we are to consider a curve P with p number of points and a curve
Q with q number of points, the discrete Fréchet distance has a fixed quadratic run
time of O(pq). There has been work to reduce the quadratic run time cost of the
discrete Fréchet distance [31, 32]. The computational cost is generally not a con-
cern when considering a typical test data, and is only mentioned to understand
how the algorithm scales with the number of data points. The discrete Fréchet
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distance has been used in a variety of applications, including the identification of
unique atomistic motions [33].

The difference between the discrete Fréchet distance and the true Fréchet dis-
tance is at most the length of the longest edge along the polygonal curves [30]. It is
worthwhile to note that algorithms to obtain a more accurate Fréchet distance do
exist, but at the cost of additional computational expense. For instance Alt and
Godau [34] presented an algorithm that computes the Fréchet distance using a
parametric search with a run time of O(pq log(pq)). The discrete Fréchet distance
was deemed to be a reasonable approximation for this work because the upper
bounded error was small with the provided data. The Python MDAnalysis library
includes a discrete Fréchet distance function that was used in this work [33].

2.4 Dynamic Time Warping

Dynamic Time Warping (DTW) has been a popular method for pattern recogni-
tion, and particularly useful for speech recognition [35, 36]. DTW first calculates
the distance between points of one curve onto the other curve. If we are to consider
a curve P with p number of points and a curve Q with q number of points, for
each p point the distance between p and every q point is calculated. This has the
same quadratic complexity of O(pq) as the discrete Fréchet distance. The goal of
DTW is to find the path between curves that minimizes the cumulative distance
between points.

Imagine traversing the path of both curves simultaneously, where you start
from the first index of each curve. The distance between the points at the first
index of each curve is your first distance. You are then presented with three choices:
(1) move to the second index of curve P , (2) move to the second index of curve
Q, or (3) move to the second index of curve P and the second index of curve Q.
The second distance will be either the distance between the points of the second
indexes, or the distance between the point of the second index on one curve and
the first index on the other curve. This process is repeated until you are on the
last index of each curve. The optimal DTW distance represents the path with the
smallest cumulative distance once you have reached the last index of each curve.
To aid in the visualization of DTW consider the arbitrary curves in Fig. 5 a. The
optimal DTW path is shown in Fig. 5 b, where the DTW distance is the value of
the tile in the top right (at the last index of each curve).

The R dtw package was used in this work [37]. In a case where a very large
number of points are considered, it may be worthwhile to consider the FastDTW
algorithm by Salvador and Chan [38]. FastDTW is a popular approximation of
the DTW distance with linear cost, although the reduced computational expense
comes at the cost of reduced accuracy. The quadratic computational expense is
not a concern for typical hysteresis curves, but it is worthwhile to note how the
method may scale provided a very large number of points.

2.5 Curve Length

Cao and Lin [39] suggested an objective function with automatic weighting factors
to determine material constants that match experimental data. Andrade-Campos

https://doi.org/10.1007/s12289-018-1421-8
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Fig. 5 Arbitrary curve P and curve Q shown in two dimensions in (a) where the optimal
DTW path is shown in (b) where each tile represents the cumulative distance from the first
index of each curve.

et al. [22] took the objective function of Cao and Lin and extended it to be applica-
ble for negative and zero stress and strain values. Additionally, Andrade-Campos
et al. introduced a novel curve length attribute to be included in the objective
function to quantify the quality of fit between two curves. The final Curve Length
objective function is suitable for identifying parameters for a variety of cases, in-
cluding cyclic hysteresis tests and Bauschinger tests.

This Curve Length inspired objective function works on the principle that a
point on one curve can be compared to its corresponding curve length location
on the other curve. Essentially the stress and strain values from a cyclic tension-
compression-tension test can be expressed as a function of the curve length distance
from the first data point. A data point on the experimental curve will have some
curve length distance that can be expressed as a ratio from the total experimental
curve length. The stress and strain values from two curves are compared at the
same curve length ratios, and an objective function is formulated as the sum of
the natural log of these squared deviations.

An illustration depicting this process is provided in Fig. 6. A corresponding
data point on the numerical model is calculated at the equivalent curve length
location of the experimental curve. Squared residual values are then calculated
as function of both the dependent and independent variables. The sum of these
squared residuals is used to quantify the difference between the two curves.

The implementation of the Curve Length measure used in this work is the OF2
from [22], which was seen to better identify a hyperelastic and elasto-viscoplastic
models. This formulation is self-normalizing, and utilizes a natural log transfor-
mation. This OF2 objective function is referred to as the Curve Length method
throughout this paper.

3 Results

The different similarity measures were first compared to minimizing the sum-of-
squares to clearly illustrate the difference between methods. The first example
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Fig. 6 Depiction of a Curve Length inspired objective function. The r2i residuals are summed
for the N data points to quantify the difference between the two curves.

fits a straight line to linear data with a single outlier and fits a straight line to
quadratic data. Optimization is used to find the best line according to the Area,
PCM, discrete Fréchet, DTW, and Curve Length similarity measures.

The similarity measures were then used in optimizations to identify parameters
from a single load-unload cycle. This problem was invented for the purpose of
illustrating the methods on a simple example. There is a known analytical solution.
Having a known solution makes it easier to test both the optimization strategy,
and the implementation of each similarity measure.

Lastly, material parameters were identified for a kinematic hardening trans-
versely anisotropic material model. Optimization was used to find the parame-
ters such that the FE models reproduce experimental tension-compression-tension
cycles. Test data is from five different tension-compression-tension cycles. The
material exhibits stress-strain hysteresis, and the results compare the differences
between measures of similarity. To see how the objective functions deal with noise,
the inverse problems are solved again with artificially added noise to the desired
curves.

In general, it is impossible for numerical models to match experimental data
exactly. It is not likely that a material model matches reality perfectly, and even if
it does, measurement errors are likely to foil a perfect fit. An outlier, linear model
to quadratic data, fitting with noise, and the kinematic hardening problem are just
examples of when obtaining a perfect fit is not possible. These examples illustrate
how the best model may be dependent upon the similarity measure chosen for
many practical problems.

https://doi.org/10.1007/s12289-018-1421-8
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3.1 Straight line illustrative fit

In this section a straight line is fit to linear data with an outlier, and to quadratic
data using the five measures of similarity. The fits are performed using a global
optimization routine. The similarity measures were minimized using the genetic
algorithm (GA) implemented in LS-OPT with the default parameters. The GA
serves as the global optimization routine to find the best line.

A straight line was fit to ten data points originating from a straight line, with
one of the data points being modified to resemble an outlier. The Area, PCM,
discrete Fréchet, DTW, and Curve Length similarity measures were minimized
to find the line of best fit to the data. The methods are compared to the line
resulting from minimizing the sum-of-squares through a least squares fit. Results
from the different similarity measures are presented in Fig. 7. The Area and DTW
methods entirely ignore the single outlier, as expected between methods that sum
the absolute distances (L1 norm). Minimizing the discrete Fréchet distance creates
a line that is in-between the outlier and the remaining data points, as can be
expected by a method that minimizes the maximum distance (L-infinity norm).
Minimizing the PCM method produced a line with a steeper slope than the trend,
as the method was accounting for the increased arc-length from the outlier. The
sum-of-squares optimum represents a line that is an average preserving compromise
between the true trend and the outlier, as expected from an L2 norm. The Curve
Length similarity measure produces a line that is initially similar to the sum-of-
squares optimum, but dips slightly below the data points at the end.

The results of fitting a line to quadratic data are shown in Fig. 8. First a
fit was performed to the original data. Then a second fit was performed, where
the data was first normalized such that each variable ranged from zero to one.
The fits were determined by minimizing the similarity measures with the GA.
The discrete Fréchet distance and DTW methods were severely affected by the
normalization. Looking at the normalized quadratic data it is seen that the discrete
Fréchet distance resulted in a line that was just above the sum-of-squares solution,
while the Area and DTW methods result in a line just bellow the sum-of-squares
solution. Minimizing the Area and DTW produced the same results when fitting
quadratic data or fitting a line with an outlier, as seen in Fig. 7 and Fig. 8 (b).
The PCM method resulted in a line with a different slope than the other methods.
Normalization is built into the PCM and Curve length methods, so in both cases
they resulted in the same fit. Normalization did not appear to affect the Area
method as the results with and without normalization were the same.

3.2 Single load-unload cycle example

A single load-unload cycle problem is proposed as the following piecewise equation{
exp(β0x) + β1 0 ≤ x ≤ 1.0

2.0 exp(β2x) − 2.0 exp(β3) + exp(1.0) − 1.0 1.0 ≥ x ≥ 0.62
(2)

with four unique β parameters to identify. This piecewise function with added
noise was seen in Fig. 1. The true values and optimization bounds of the problem
are found in Tab. 1. The problem is solved with and without noise. Artificially
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Fig. 7 Results of fitting a line to linear data with central outlier by minimizing different simi-
larity measures. The outlier was exaggerated to clearly show the differences between similarity
measures.
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Fig. 8 Results of fitting a line to quadratic data by minimizing different similarity measures.
The original data and results are presented in (a), while (b) shows the results with normalized
data.

added noise was generated by taking a randomly sampled array from the normal
distribution of µ = 0.0 and σ2 = 0.05, and then the array was added to the true
response. The noise is added only to the dependent variable (f(x)), and results in
a signal-to-noise ratio (the ratio of the mean to the standard deviation from noise)
of 3.33.

https://doi.org/10.1007/s12289-018-1421-8
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Table 1 Parameter bounds and true values for the single load-unload cycle example.

Parameter Lower bound True value Upper bound

β0 0.0 1.0 10.0
β1 -10.0 -1.0 10.0
β2 0.0 1.0 10.0
β3 0.0 1.0 10.0

The genetic algorithm (GA) was used with the default parameters, except for
the maximum number of iterations which were increased from 100 to 200, because
the optimizations were still improving after 100 iterations. This optimization prob-
lem is more challenging in terms of the number of function evaluations required
to find a global optimum, than the previous straight line fits. The GA was used to
find the optimal β terms that minimize the difference between some guess and the
true values. The problem is solved by minimizing either the Area, PCM, discrete
Fréchet, DTW, and Curve Length methods. The GA iterations are plotted against
the objective function values in Fig. 9. When there isn’t noise, the objective val-
ues are still improving at 200 iterations, and presumably heading to the known
zero objective value. However, when noise is introduced we see that all objective
functions stop improving around 100 iterations.
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Fig. 9 Plots of the objective values as a function of the iteration of the Genetic Algorithm
for the single load-unload cycle example.

All of the objective functions can be minimized to find the true solution. The
resulting curves from the best objective functions are shown in Fig. 10. However
when noise was present in the data the PCM method struggled, as the optimum
objective functions from the noisy data are seen in Fig. 11. DTW and the Area
method produced a response that moves through the center of the data points,
which is nearly identical to a response by minimizing the sum-of-squares. The line
from the sum-of-squares solution is actually covered up by the lines from the DTW
and Area methods. The response from the discrete Fréchet distance moves through
the data points, but does not remain in the center of the noise. The PCM method
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was not capable of finding reasonable parameters with the noisy data. The Curve
Length method produced a response that travels on the outer edge of the noise.
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Fig. 10 The curves resulting from the best found objective function values and the original
data.

The problem with noise is interesting because it is not possible for any of the
objective functions to equal zero. Each optimization found their own best objective
function (i.e. minimizing DTW resulted in the best DTW value, minimizing PCM
resulted in the best PCM value, etc.). Visually some of these resulting curves
(Area, DTW, and sum-of-squares) appear to be better fits than the other objective
function values. These fits are just the best according to the minimized objective
function. When it was impossible to obtain a perfect fit, the different measures of
similarity produced different results. However, each measure of similarity produced
nearly identical results when it was possible to obtain a perfect fit.

3.3 Kinematic hardening parameter identification from five cycles

The kinematic hardening parameter identification problem used in Witowski and
Stander [27] is revisited to compare the performance of the Area, PCM, dis-
crete Fréchet, DTW, and Curve Length methods. The LS-DYNA material model
MAT 125 is calibrated using a single element, and the nine unknown material
parameters are determined by matching the response of the LS-DYNA model to
five experimental hysteresis tension-compression-tension curves. A single objective
function is created by summing the similarity measures between the numerical

https://doi.org/10.1007/s12289-018-1421-8
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Fig. 11 Curves resulting from the best found objective function values using the noisy data.

model results and the test cycles. Again ten optimizations are run in total, two for
each method. The problem is solved with the experimental curves as is, and with
artificially added noise.

MAT 125 is based on the kinematic hardening rule developed by Yoshida and
Uemori [17], with the addition of allowing the Young’s modulus to vary as a func-
tion of the effective plastic strain [40]. The manual recommends to use MAT 125
with an implicit FE model when modeling a metal forming process [40]. The ma-
terial model is not time dependent, thus comparisons of time from the FE model
to quasi-static test data may not be relevant.

The parameters are determined in a two part optimization process in an at-
tempt to find the global optimum. First a metamodel (or surrogate) based op-
timization using the sequential domain reduction (SDRM) technique is run [41].
The SDRM can find reasonable parameters after just a few iterations, though it
is not guaranteed to find the true global optimum. The optimum from SDRM is
then used as one individual (or the starting point) for a genetic algorithm (GA),
in hopes that the GA will find the global optimum. The GA terminates when the
relative objective function improvement was less than 0.1% for 100 consecutive
iterations. This overall strategy requires a large number of function evaluations
on multiple non-linear FE models. If the number of function evaluations is a con-
cern, it may be reasonable to consider using just the SDRM to find a good-enough
solution for a fixed number of function evaluations. The optimization bounds are
presented in Tab. 2.

The optimizations are performed with and without artificial noise to the test
data. The noise was added at random from a normal distribution of µ = 0.0, σ2 =
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Table 2 Parameter bounds for the kinematic hardening material model.

Parameter Lower bound Upper bound

CB 500 1000
SIGY 450 600

C 90 300
K 10 35

RSAT 250 550
SB 120 400
H 0.5 1.2
C1 0.01 0.1
C2 0.05 0.5

35. The noise is added only to the stress values. The signal-to-noise ratio (consider
the mean of the absolute stress value over the standard deviation of the added
noise) from the first tension-compression-tension cycle to the last cycle is: 83.1,
105, 117, 127, and 133. These large values suggest that the signal of the hysteresis
loop was much stronger than the added noise. It isn’t known if this amount of
added noise is realistic of an experimental test, but the added noise will provide
insight into how the the different similarity measures behave. The added noise
represents a case where it is impossible for the numerical model to match the test
data exactly. The original test data that was used by Witowski and Stander [27],
along with the artificially added noise can be seen in Fig. 12.

The data was first normalized for DTW and Discrete Fréchet measures which
were shown sensitive to noise in Fig. 8. The normalization strategy is similar to
the PCM method, which sets the stress-strain values of the test curve between
zero and one.
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Fig. 12 The five cycles of the original test data as well as the five cycles with artificially
added noise.
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The numerical model optima responses are seen in Fig. 13, and the results
with the added noise in Fig. 14. The PCM method was unable to find reasonable
material parameters when noise was added to the test data. Though the results of
using Area, discrete Fréchet, DTW, or Curve Length as objective functions appears
to produce a stress-strain curve that falls within the noise of the hysteresis data. To
view the results of individual hysteresis cycles refer to Appendix C. Qualitatively,
the results from the Area, DTW, or Curve Length method appear to match the
test data the best. While it appears that the Area, Discrete Fréchet, or DTW
methods appear to match the test data with added noised the best.
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Fig. 13 Material parameter identification optima for MAT 125 using various measures of
similarity.

The parameter values found from each optimization are presented in Tab. 3.
Each method recommended different material parameters with a considerable
amount of variation. Additionally, variation is present when comparing the re-
sults with noise to the results without noise. There is no clear consensus as to
what the best set of parameter values should be.

The resulting optima by minimizing one objective function were evaluated
by the other measures of similarity, and presented in Tab. 4 and 5. Each global
optimization was successful in finding it’s own best similarity measure. For the
results without noise, the Area, DTW, and Curve Length methods appear to have
the most similar objective values.

Line plots between the results of the first SDRM optimization were performed
and shown in Appendix B. The line plots indicate whether multiple local optima
exist in-between the optima found. Local optima was occasionally found by line
plots when considering the cases without added noise (e.g. Fig. 18 a). In gen-
eral there were fewer local optima (indicated by line plots) when considering the
hysteresis loops with artificially added noise.

The results without noise did not find parameters for the MAT 125 model
which result in a zero objective function value. An additional optimization was
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Fig. 14 Material parameter identification optima for MAT 125 using various measures of
similarity when noise was artificially added to the test data.

Table 3 Parameters determined from minimizing different objective functions for the kine-
matic hardening problem. Values at a lower or upper bound do not imply that the similarity
measures produce similar material parameters.

Objective function CB SIGY C K RSAT SB H C1 C2

without noise
Area 629 467 160 35 414 196 0.54 0.01 0.12
PCM 687 450 127 24 508 174 0.56 0.01 0.15

Fréchet 763 454 93 23 481 123 0.89 0.02 0.21
DTW 604 451 202 35 493 209 0.50 0.01 0.12

Curve Length 619 451 173 35 389 215 0.51 0.01 0.13
with artificially added noise

Area 678 450 119 28 328 143 0.50 0.01 0.17
PCM 1000 450 132 35 550 343 1.19 0.01 0.29

Fréchet 720 450 132 11 421 120 0.89 0.02 0.18
DTW 642 451 164 35 407 166 0.50 0.01 0.15

Curve Length 695 472 300 10 550 190 1.19 0.01 0.41

Table 4 Without noise: Objective function values from different optimizations on the kine-
matic hardening problem. The first column of a row indicates what objective function was
minimized by the optimization, while the other columns indicate the other objective function
values.

Optimization Method value
objective Area PCM Fréchet DTW Curve Length

Area 45.1 6.3×10−3 0.36 22.5 4.4

PCM 59.7 3.3×10−3 0.37 27.9 7.5

Fréchet 78.3 4.5×10−3 0.34 35.8 10.7

DTW 45.5 5.7×10−3 0.36 21.7 4.6

Curve Length 45.5 4.9×10−3 0.36 22.6 4.3

https://doi.org/10.1007/s12289-018-1421-8
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Table 5 With added noise: Objective function values from different optimizations on the
kinematic hardening problem. The first column of a row indicates which objective function was
minimized by the optimization, while the other columns indicate the other objective function
values.

Optimization Method value
objective Area PCM Fréchet DTW Curve Length

Area 119.0 1243.8×10−3 0.42 30.2 29.2

PCM 434.1 832.1×10−3 1.59 176.2 50.3

Fréchet 123.7 1248.3×10−3 0.40 30.6 28.7

DTW 120.8 1208.6×10−3 0.44 28.7 28.2

Curve Length 150.6 1062.2×10−3 0.59 47.0 24.9

run by picking a known set of MAT 125 parameters, and setting the test data
to be the result of the FE models from these known parameters. The SDRM
optimization produced stress-strain curves that resembled virtual test data. Then
when the GA was used to improve upon the SDRM results, it was observed that
all objective values were heading to zero. If a perfect fit exist, then any of the
measures of similarities can be used to identify the parameters.

A five fold cross validation (CV) study was performed on the kinematic hard-
ening parameter identification problem while trying to determine the differences
between similarity measures. This means that the inverse problem was solved us-
ing four of the five hysteresis loops, and then validated on the remaining hysteresis
loop. The processes was repeated five times such that each loop was used as the
validation once. Only the SDRM optimization method was used, because of com-
putational cost restrictions. When these five fold CV results were compared with
the initial SDRM results, it was observed that not including a hysteresis loop as
data in the inverse problem resulted in material parameters that aren’t as good
at matching that particular hysteresis loop.

This kinematic hardening parameter identification problem is used as an LS-
OPT training example. The data, models, and optimization routines are available
upon request.

4 Discussion

The Area, discrete Fréchet, and DTW measures of similarity are similar to tra-
ditionally statistical measures of similarity between curves. The discrete Fréchet
distance is similar to the maximum error, as both methods (when minimized) are
sensitive to outliers. Despite different rationale, the Area and DTW methods are
similar to the sum-of-errors (or mean absolute deviation). The Area and DTW
methods could be modified to produce analogous results to the sum-of-squares
solution. This could be accomplished by squaring the distances in DTW, or by
squaring the areas in the Area method. Together these methods are similar to
the standard L1 norm, L2 norm, and L-infinity norm with an advantage of being
particularly useful for identifying unique hysteresis loops.

It is worthwhile to note that all of the similarity measures would return an ob-
jective function value of zero for the exact β parameters when considering noiseless
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data. For perfect global optimization, there will be a non-zero residual for an im-
perfect model. There is always the potential that an imperfect model could be
be improved with a better physical understanding of the problem (e.g. selecting
a better material model, or more appropriate FE model). When the noisy data is
considered there will always be a non-zero objective function value. In all exam-
ples, the PCM method was more sensitive to the noise than the other methods.
The PCM method is known to be sensitive to noise, thus the LS-OPT manual
recommends to use a noise filter to pre-process the curve before using PCM. If
it was possible to completely filter out the noise, then the results without noise
would be identical to the results with noise for all problems.

The discrete Fréchet distance and DTW produced different straight lines when
considering the normalized and original quadratic data, as shown in Fig. 8. This
was a result of the algorithms focusing on removing the distance in the variable
that was an order of magnitude larger than the other variable. It is recommended
to first normalize stress-strain responses when applying discrete Fréchet distance
and DTW as stress can be orders of magnitude larger than strain. It is worthwhile
to mention that normalization is built into the PCM and Curve Length methods
by default.

Using partial matching algorithms, such as PCM, may sometimes be prefer-
able to the other measures of similarity. For instance consider a case where the
numerical model was only replicating the loading stage of a hysteresis loop. In this
case, PCM is the only method that can be applied to find a partial match of just
the initial tension section of the hysteresis loop shown in Fig. 15. The PCM is the
only measure of similarity in this paper that would return a zero value for this
partial mapping. Tormene et al. [42] proposed a partial matching DTW strategy
that is available in the R dtw package. Partial matching DTW was not covered in
this study, but it may be of interest for future work.

Each measure of similarity presented has its own advantages when being used
for parameter identification. The PCM method is capable of matching partial
responses. The Discrete Fréchet distance would be useful at reducing the maximum
error at any location of two curves. The Area and Curve Length methods appear
to have a smoother design space than the other measures when comparing the line
plots in Appendix A. It may be preferable to use gradient based optimizations
on smooth objective functions which would have fewer local minima than non-
smooth objective functions. A qualitative comparison of the objective functions is
presented in Tab. 6.

Table 6 A qualitative comparison of the objective functions covered in this work.

Objective Partial Resistance Resistance Function
function matching to noise to outliers shape

Area no good good smooth
PCM yes poor poor non-smooth

Fréchet no fair poor non-smooth
DTW see [42] good good less smooth

Curve Length no fair good smooth

https://doi.org/10.1007/s12289-018-1421-8
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Fig. 15 Partial mapping example where the PCM objective function value is zero between
numerical and experimental curve.

Consider a problem where the data is perfect, meaning that there is no noise
and all data points are trusted. All five similarity measures presented will return
zero for a numerical model that matched the data exactly. Ideally this would repre-
sent a global optimum for the numerical model. If the numerical model was unable
to replicate the behavior from just one experimental data point, then each simi-
larity measure may have a unique global optimum recommending a different set
of model parameters. The differences in identified parameters would be the result
of the interpretation of each similarity measure. A comparison of the measures of
similarity for imperfect fits was best illustrated in section 3.1, with Figs. 7 and 8.
This is reasonable motivation to consider multiple similarity measures, as often
it is impossible for numerical models to match experimental data exactly. For ex-
ample, it could be impossible to obtain a perfect match if the numerical model
inadequately captured the physics of an experimental response, or if there are
errors associated with the experimental response.

5 Conclusion

Five different measures of similarity between two curves are presented. The PCM,
discrete Fréchet, DTW, and Curve Length measures are from literature. Addition-
ally, a new algorithm is presented to approximate the Area between two curves.
These five methods offer advantages over traditional sum-of-square methods, be-
cause they don’t require the numerical model to be aligned with the experimental
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data. Additionally they may work particularly well with hysteresis loops, load-
unload cycles, or tension-compression tests. These similarity measures can be con-
sidered as alternatives to error formulations based on the sum-of-squares, as they
help quantify the quality of fit between an experimental and numerical curve.
These quantities can be minimized in an inverse analysis to aid in the identifica-
tion of material parameters. Note that this work assumes that the curves are in a
particular time-series order from an initial point to a final point.

When there is no noise present in the data, the results of minimizing either the
Area, PCM, discrete Fréchet, DTW, or Curve Length similarity measures produce
a reasonable solution. If a perfect fit is possible, any single similarity measure can
be used to find the parameters that determine the perfect match. If it is impossible
for the numerical model to match the experiment exactly, each method may yield
a different solution due to the different physical interpretation of each method. For
practical problems it is often impossible to match the experimental data exactly.
In these cases, it would be useful to have the best set of parameters from multiple
similarity measures. Differences between sets of material parameters may provide
an indication of the uncertainty associated with each parameter.

A Algorithm to calculate area between two curves

The area of any simple (non self intersecting) quadrilateral can be expressed by Gauss’s area
formula (also known as the shoelace formula). Gauss’s area formula for a simple quadrilateral
is

A =
1

2

∣∣x1y2 + x2y3 + x3y4 + x4y1 − x2y1 − x3y2 − x4y3 − x1y4
∣∣ (3)

where A is the area and (xi, yi) represents the vertices of the quadrilateral. It is worthwhile
to note that any complex quadrilateral can become a simple quadrilateral by rearranging the
order of the vertices.

(a) Complex (b) Concave (c) Convex

Fig. 16 Examples of complex and simple quadrilaterals. A simple quadrilateral can be either
concave or convex.

The interior angles of a quadrilateral can be used to detect whether a quadrilateral is
simple or complex. Any simple quadrilateral will have a sum of interior angles that add up
to 360◦. If all interior angles are less than 180◦, the simple quadrilateral is said to be convex.
However if one interior angle is greater than 180◦, the simple quadrilateral is said to be concave.
The interior angles of complex quadrilaterals will add up to 720◦. An example of a complex,
concave, and convex quadrilaterals are shown in Fig. 16.

The change of sign of cross products can be used to detect if a quadrilateral is complex (as
an interpretation of the interior angles). Let’s consider an arbitrary quadrilateral represented

https://doi.org/10.1007/s12289-018-1421-8
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Fig. 17 By swapping the vertices of (x1, y1) with (x2, y2), the complex quadrilateral of (a)
becomes the simple quadrilateral in (b).

by the following vectors:

AB =< x2 − x1, y2 − y1 > (4)

BC =< x3 − x2, y3 − y2 > (5)

CD =< x4 − x3, y4,−y3 > (6)

DA =< x1 − x4, y1 − y4 > (7)

The sign of the following cross products dictates whether a quadrilateral is self intersecting or
not.

AB ×BC (8)

BC ×CD (9)

CD ×DA (10)

DA×AB (11)

A complex quadrilateral exists if and only if two of the above cross products are negative and
the other two are positive. A simple quadrilateral will have at least three of the same sign cross
products. The vertices of a complex quadrilateral can be used to create a simple quadrilateral
simply by rearranging the order as shown in Fig. 17.

A pseudocode algorithm to compute the effective area between two curves is presented
as Algorithm 1. The algorithm first ensures that the two curves have the same number of
data points. If not, points are added to the curve with fewer points. The total number of
quadrilaterals created will be one less than the number of data points. Two consecutive points
are taken from each curve, acting as the vertices of the quadrilateral. Note that the order
of the data points which represent the curve is important. The first quadrilateral uses the
first and second data point from each curve, the second quadrilateral uses the second and
third data point from each curve and so forth. Each quadrilateral is then determined to be
either simple or complex. If the quadrilateral is complex, the vertices are reordered until the
quadrilateral becomes simple. The area of each simple quadrilateral is calculated using the
Gauss area formula, and all quadrilateral areas are summed to give an effective area between
curves.

B Line plot for kinematic hardening problem

Line plots were performed in between data points of the kinematic hardening problem to
visualize the design space with different similarity measures. All objective function values were
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Algorithm 1: Compute the effective area between curveA and curveB.

1 function areaBetweenCurves (curveA, curveB);
Input : Data of curveA and curveB.
Output: Area between curveA and curveB.

2 # the length() function returns the number of data points
3 if length(curveA) < length(curveB) then
4 A = curveA;
5 B = curveB;

6 else
7 B = curveA;
8 A = curveB;

9 end
10 while length(A) < length(B) do
11 Compute distance between every two consecutive points of A;
12 Find the two points that generate the max distance;
13 Create a point that bisects these two points;
14 Add the bisect point to A in between the two points;

15 end
16 n = length(A) -1; # compute the number of quadrilaterals;
17 areas = zeros (n); # initiate zeros array for areas;
18 for i = 1 to n do
19 # Assemble quadrilateral;
20 quad = [A[i], A[i+1], B[i+1], B[i]];
21 if quad is not simple then
22 Rearrange the order of vertices until quad is simple;
23 end
24 # Calculate the Gauss/shoelace area of the quadrilateral;
25 areas[i] = gaussArea(quad);

26 end
27 # Return the summation of quadrilateral areas;
28 return sum(areas);

normalized using

zi =
xi − min(x)

max(x) − min(x)
(12)

such that zero is the best found objective function, and one is the worst. The line plots without
noise are presented in Fig. 18, and the line plots with noise are presented in Fig. 19. The line
plots help to illustrate the state of the design space (for each measure of similarity) between
the optima found. Additionally it appears that the Area and Curve Length methods produced
smoother design spaces than the PCM and Discrete Fréchet methods. The line plots were
calculated from the results of the first SDRM optimization result, and sometimes display a
local optimum that the SDRM failed to find.

C Kinematic hardening results

It is difficult to recognize the differences between similarity measures for the kinematic hard-
ening parameter identification from section 3.3. This appendix section shows the results from
section 3.3 for the individual hysteresis loops. The results of the hysteresis curve from the
parameter identification can be seen in Figs. 20- 24, and the results with noise in Figs. 25- 29.
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

ob
je

ct
iv

e
va

lu
e

Area
PCM
Discrete Fréchet
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Fig. 18 Without noise: Line plot with normalized objective values from one objective op-
timum to another objective optimum.
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DTW
Curve Length

(e) from Area to Discrete Fréchet
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Fig. 19 With noise: Line plot with normalized objective values from one objective optimum
to another objective optimum.
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Fig. 20 Area results for kinematic hardening parameter identification.
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Fig. 21 PCM results for kinematic hardening parameter identification.
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Fig. 22 Discrete Fréchet results for kinematic hardening parameter identification.
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Fig. 23 DTW results for kinematic hardening parameter identification.
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Fig. 24 Curve Length results for kinematic hardening parameter identification.
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Fig. 25 Area results with noise for kinematic hardening parameter identification.
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Fig. 26 PCM results with noise for kinematic hardening parameter identification.
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Fig. 27 Discrete Fréchet results with noise for kinematic hardening parameter identification.
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Fig. 28 DTW results with noise for kinematic hardening parameter identification.
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Fig. 29 Curve Length results with noise for kinematic hardening parameter identification.
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