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The choice of objective function has been overlooked in inverse analyses and Finite

Element (FE) model updating problems, specifically in problems where the application was

the identification of material parameters. These problems use optimization to find material

parameters in a FE model, by getting the FE model to match some experimental responses.

The optimization minimizes some objective function which assess the quality-of-fit between the

two responses. Different objective functions resulted from differences in: 1) problem definition,

2) error measure, or 3) normalization of data. A chapter is dedicated to how each of these

different abstractions in objective function influence the resulting material parameters. When

determining parameters for a non-linear orthotropic material model from uniaxial tests, the

result was that different material parameters occurred when matching either the stress-strain or

the load-displacement responses. Additionally, different mathematical norms were demonstrated

to result in different kinematic hardening material parameters. These norms were applied when

matching complex tension-compression-tension cycle tests, and the different methods resulted

in very different material parameters. There has been interest in use full-field displacement

data to identify material parameters, and this work demonstrated that different normalization

schemes in the displacement field residuals result in different orthotropic parameters. Linear

orthotropic material parameters were better identified when the in-plane displacements had

equal weight to the out-of-plane displacements. The lessons learned in this work recommend

13



engineers explore more than one possible objective function, as the results obtained using

different objective functions may provide more insight than a single set of material parameters.
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CHAPTER 1
PREFACE

Engineers typically use mathematical models based on controlled observations to design,

analyze, and predict. This has been particularly prevalent in the structural analysis community,

where Finite Element (FE) analysis has played an important role in the design of modern

airplanes, automotive vehicles, and many other structures where the ultimate performance of

the design is determined by material behavior in the context of the chosen topology. These

FE models depend on many parameters characterized to represent complex material behavior.

Identifying the material parameters to best describe complex material responses has been an

ongoing research topic.

Inverse analyses have been used to identify material parameters in FE models. These

processes have also been referred to as finite element model updating (FEMU). These problems

are presented as inverse problems, because they work with the responses (effects) and attempt

to calculate the material parameters (causes) in cases where the parameters cannot be directly

observed. The goal in these analyses has been to find the parameters such that the FE model’s

response best replicates an experimental response. In this context, an inverse analysis refers

to the process of using optimization to minimize the difference between experimental data

and a numerical model’s response. Some objective function is used to quantify the differences

between responses. A few of the first works related to inverse analyses which determined

material parameters include [1]–[5]. All of these papers used numerical optimization techniques

to find the material parameters which minimized the difference between FE models and

experimental responses.

A number of technical advances have occurred in FEMU related problems since the early

contributions. New material models have been introduced to FE models which are capable

of replicating more complicated material behavior, but introduce a number of additional

parameters that need to be identified [6]–[9]. There have also been a number of advancements

in the understanding and use of numerical optimization techniques [10]–[14]. Advancements
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with optical and non-intrusive Digital Image Correlation (DIC) has lead to a number of new

experimental techniques [15]. Using DIC on complex load-cases, FE model parameters have

been characterized on many different materials [16]–[21]. Unfortunately, all of these studies fail

to identify the influence of the objective function on the FE model parameters.

Cao and Lin [22] set out a study to understand how the objective function influences

material parameter identification. The focus was on identifying parameters from multiple

stress-strain curves, and three different objective functions were studied. While it can be

seen that different objective functions result in different numerical models, the work focused

on the comparison of the objective functions’ convergence. Andrade-Campos, De-Carvalho,

and Valente [23] extended the previous work, by making the proposed objective function

applicable for negative and zero stress and strain values. They showed that these different

objective functions resulted in different material parameters, when considering the same

collection of experimental responses. The paper went on to discuss the potential advantages

of incorporating each objective function. This perhaps illustrates a fundamental issue that

has been overlooked in many material parameter identification problems, where the resulting

material parameters are dependent upon the objective function used in the optimization.

In the context of identifying material parameters with inverse analyses, this body of work

demonstrates that the choice of objective function affects the material parameters. The effects

of the objective function in these inverse analyses have been overlooked for the most part of

the literature, and this work presents a broad abstraction of how objective functions influence

resulting material parameters. While [22] and [23] studied the objective function in such

analyses, they primarily focused in a narrow scope on weighting schemes from multiple data

sets. While the scope of this work can be abstracted in a way that is more fundamental to the

problem of material parameter identification. This work illustrates that the choice of objective

function influences identified material parameters in a variety of different applications beyond

multiple data sets, which consider various materials, experiments, models, and applications.
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The objective function is abstracted in three different ways throughout this work, which

include: 1) problem definition, 2) error measure, and 3) normalization of data. Here problem

definition relates to how the minimization problem is formulated. Typically, material parameter

problems are defined by matching either a load-displacement or stress-strain response (but

material parameters can be identified with other responses including heat and time). This

work illustrates that the choice to define a problem in stress-strain space may produce different

parameters than a problem defined in load-displacement space. In mathematics there are

number of different norms which are all suitable for defining an objective function (or the

quality-of-fit between two responses). This work goes on to illustrate how the choice of the

norm influences resulting material parameters. Lastly, there can be many different methods to

derive an objective function when dealing with full-field experimental techniques (such as DIC).

This work demonstrates that different normalization techniques on the experimental data set

influence resulting material parameters.

The second chapter of this document describes a process for determining parameters

for a non-linear orthotropic material model for PVC-coated polyester. Two different methods

were compared. Parameters were determined from an inverse analysis matching the load-

displacement response from uniaxial tests. Additionally, parameters were determined directly

from the stress-strain uniaxial response. The origin of the experimental data is the same for

both methods, the only difference is the frame in which the problem is defined. The two

approaches can be thought of as different objective functions. The results show that the

material parameters are different when matching the load-displacement or the stress-strain

responses. The differences in the material parameters may stem from the fact that the material

model was incapable of matching the experimental response exactly.

The third chapter extends the choice of objective function to describe different error

measures that assess quality-of-fit. These methods were used as the objective function to

calibrate a kinematic hardening material model by measuring the error between numerical and

experimental hysteresis curves. The similarity measures are convenient to use when matching
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cyclic paths between a Several mathematical methods, borrowed largely from the machine

learning community, were introduced to the material parameter identification problems. The

different methods are related to different mathematical norms used to assess the error between

two responses. The different similarity measures go on to result in different sets of material

parameters.

The fourth chapter describes a material parameter problem where the normalization of

data affects the material parameters. Material parameters where characterized from a bulge

inflation test using full-field displacements. The inverse analysis minimizes the difference

between experimental and numerical displacements. A FE model was constructed to replicate

the experimental bulge inflation tests. The experimental displacement field was captured

utilizing DIC. The normalization of displacement components resulted in a comparison of two

different objective functions, and the normalization resulted in significantly different material

parameters.
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CHAPTER 2
NON-LINEAR ORTHOTROPIC MODEL FROM UNIAXIAL TESTS

A hypoelastic non-linear orthotropic material model was characterized for two different

PVC-coated polyesters from uniaxial tests in the warp, fill, and 45◦ bias yarn directions.

Ultimately the non-linear orthotropic material model fails to capture the full behavior of

PVC-coated polyester. Thus the determination of material parameters depends upon which

experimental response is the most important for the model to capture. Two methods are

presented for determining different parameters for the non-linear orthotropic material, such

that each method captures a particular aspect of the material’s response better than the

other method. The first approach derives the stiffness moduli as a function of strain from

the experimental stress-strain response of the uniaxial tests. The second approach utilizes

an inverse analysis, powered by an optimization routine, to find the best material parameters

such that the experimental load-displacement response is matched in the finite element (FE)

model. Additional the Poisson’s effect was investigated, and the transverse uniaxial behavior is

presented.∗

2.1 Introduction

Coated fabrics, such as PVC-coated polyester, or other technical woven textiles are

used in membrane structures. The design of membrane structures often requires some form

of numerical analysis. PVC-coated polyester is generally modeled as a plane stress linear

orthotropic thin shell in finite element (FE) analyses [25]–[28], because modeling the fiber

interactions for a complete structure is too computationally expensive [29]. The linear

orthotropic material models have been widely used despite PVC-coated polyester fundamentally

violating the plane-stress assumption used by conventional FE analyses [30]. A non-linear

material model may more accurately represent the complex behavior of PVC-coated polyester.

∗ A previous version of this chapter was published in Composite Structures [24].
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For this reason, a hypoelastic plane stress non-linear orthotropic material model was selected

for modeling PVC-coated polyester and other complex composite materials.

PVC-coated polyester exhibits anisotropic behavior, however the material is often

simplified to behave as an orthotropic material[31]. The load-displacement response of

PVC-coated polyester is highly non-linear [32]. Galliot and Luchsinger [33] defined a non-linear

material model for PVC-coated polyester that was load-ratio dependent, and determined from

biaxial tests of varying load-ratios. Ambroziak and Kłosowski [34] took a different approach,

and defined a tri-linear orthotropic material model. The tri-linear model picked different

stiffness moduli based on the elemental strain values. Both of these material models offer

improvements over the traditional linear-elastic plane-stress orthotropic material model for

PVC-coated polyester, but are limited to only capturing some representative response of the

non-linear behavior.

A material model that may be an improvement from the previous work exists in the

NLELAST model definition of MSC Marc [35]. The NLELAST model includes a simplified

non-linear elastic orthotropic material model, which may be suitable for modeling PVC-coated

polyester. The material model is a plane stress hypoelastic orthotropic material model for thin

shell elements, where the Young’s moduli (E1 , E2), Poisson’s ratio (ν12), and shear modulus

(G12) can be defined as functions of the strain component in their respective directions. This

hypoelastic non-linear orthotropic material model for PVC-coated polyester may be useful

in the design and analysis of structures that may operate in the non-linear region, while

potentially providing an improved representation of the complex load-displacement behavior of

the material.

With a material model chosen, the next step is to determine the appropriate material

model parameters. Inverse analyses can be a useful way to characterize material parameters

for the FE method. In this context, an inverse analysis is the process of using numerical

optimization techniques to determine the material parameters such that a FE model matches

the behavior of a physical test. One benefit of an inverse analysis is that the material may be
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characterized with a load state that is more complex than traditional uniaxial or biaxial testing.

Garbowski, Maier, and Novati [17] set up an inverse analysis to characterize paper samples

with an orthotropic elastic-plastic hardening model. A hole was cut in the center of the biaxial

samples to increase the inhomogeneous response of the specimens. Modeling materials from a

complex state may provide more insight when modeling various composite structures.

In this investigation two PVC-coated polyesters are considered. The first is the

VALMEX® 7318 5340, and the second is Cape Coaters (Pty) Ltd CF0700T. Two characterization

methods are proposed to determine a non-linear orthotropic material model. The direct

method assumes a stress-strain conventional continuum model, while the inverse method

matches the materials load-displacement behavior. At the start of the project it was unknown

which method will produce a non-linear orthotropic material model that more accurately

represents the behavior of PVC-coated polyester. PVC-coated polyester violates the plane

stress and continuum assumptions. It was a concern that simply matching the in plane stress-

strain behavior is no guarantee that the load-displacement behavior will also be matched, and

vice versa because of violations in the plane stress and continuum assumptions.

The purpose of this paper is to provide two methods for characterizing a material with

the non-linear orthotropic material model. All the parameters used for a non-linear orthotropic

material model on two different types of PVC-coated polyesters are presented in this paper.

A direct method and an inverse method were used to determine the material parameters.

Poisson’s behavior of the material is investigated, and the limitations of the non-linear

orthotropic material model are discussed.

2.2 Uniaxial Tests

The properties of the two types of PVC-coated polyester tested are listed in Table 2-1. All

of the properties provided, with the exception of the material thickness, come directly from the

manufacturer. The thickness was obtained from the average of ten measurements taken on the

uniaxial samples.
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Table 2-1. Properties of the tested PVC-coated polyester.
VALMEX® 7318 CF0700T

warp tensile strength (ISO 1421 N/50mm) 3000 1600
fill tensile strength (ISO 1421 N/50mm) 3000 1350
grams per square meter (g/m2) 1000 700
thickness (mm) 0.81 0.55

Uniaxial tests were conducted for both PVC-coated polyesters in the material warp,

fill, and 45◦ bias yarn directions. For each material yarn direction, five uniaxial tests were

performed. The tests were performed following the ASTM D751 standard [36] cut strip test

method on a MTS Criterion® 44. Test specimens were prepared to be 25 mm in width and

175 mm in length. Clamps 30 mm wide were used to hold the specimens sufficiently flat and

parallel during the test. The distance between the clamps at the start of the test was 75 mm

as prescribed by the ASTM D751 standard.

Utilizing Digital Image Correlation (DIC) [37], a virtual strain gauge was used to track the

displacement of the specimens. This virtual strain gauge data was the only data considered

in the characterization of the non-linear orthotropic material parameters. Finite element (FE)

models were constructed to replicate the physical conditions of the uniaxial test. The results of

the FE models with the non-linear orthotropic material models were compared to the physical

behavior of the virtual strain gauges to demonstrate the effectiveness of the material models.

The DIC generates points on the surface of an uniaxial specimen in three dimensions.

Virtual strain gauges track the displacement between two points on the surface of the uniaxial

specimens. A single virtual strain gauge was placed approximately in the center of each

uniaxial test. The length of the various strain gauges used can be seen in Table 2-2. The strain

gauge lengths were chosen to match points in the calculated full displacement field as best as

possible, attempting to avoid interpolation error. The difference in initial strain gauge lengths

resulted from subtle differences in the parameters used to calculate the displacement field.

Three non-linear FE models were created in MSC Marc to replicate the three distinct

uniaxial tests in the warp, fill, and 45◦ bias material directions respectively. Symmetry is
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Table 2-2. Initial virtual strain gauge length li for material test direction.
Direction li (mm)

Warp 20.0
Fill 22.8
45◦ Bias 19.8

utilized to simplify the uniaxial FE models in the warp and fill directions. However, the

45◦ bias FE model could not take advantage of reflective symmetry as the test produced an

unsymmetrical displacement field. The FE models of the warp and fill direction only model

the area of the virtual strain gauge, while the entire sample is modeled between the grips for

the 45◦ bias FE model because of the unsymmetrical response. The mesh used for the warp

uniaxial test is seen in Fig. 2-1, while a similar mesh is used in the fill direction. The virtual

strain gauge location on the 45◦ bias mesh can be seen by the two green dots in the center of

Fig. 2-2.
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Figure 2-1. Symmetric FE mesh of the warp uniaxial test with boundary conditions.

The Young’s moduli (E1 , E2), Poisson’s ratio (ν12), and shear modulus (G12) are

defined as functions of the strain component in their respective direction for the non-linear

23



5 0 5 10 15 20 25 30

x (mm)

0

10

20

30

40

50

60

70

80

y 
(m

m
)

Figure 2-2. 45◦ bias uniaxial test FE mesh with boundary conditions and virtual strain gauge
indicated by the green dots in the center of the mesh.

orthotropic material model. MSC Marc allows for the material model to define Poisson’s ratio

as a function of strain. However having Poisson’s ratio as a function of strain presented a

computational concern for the inverse problem, specifically how to determine this function.

Thus it was assumed that Poisson’s ratio was to be a fixed constant. The next section explains

how the Poisson’s ratio was determined.

2.3 Poison’s Ratio

The Poisson’s ratio (ν12) can be expressed as the ratio of the negative transverse strain

to the axial strain for a uniaxial test in the warp direction. It is possible to add an additional

virtual strain gauge in the transverse direction to approximate the Poisson’s ratio of the PVC-

coated polyester from the uniaxial tests. A transverse strain gauge was added to every uniaxial

test, with a length of 15.0 mm. The length was chosen to avoid edge effects, while still being
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large enough to capture the transverse response. Only ν12 is needed to define the Poisson’s

ratio for a constant thickness orthotropic material model, as ν21 is determined through the

material model. We can use the test results from the uniaxial warp direction to approximate

Poisson’s ratio, because we have set up the material warp direction to align with the primary

direction in our material model.

The Poisson’s ratio was calculated for the VALMEX® 7318 and CF0700T at various loads

of the warp uniaxial tests. The results are presented in Figs. 2-3 and 2-4. It can be noted

that the Poisson’s ratio varies as the load of the material changes. There is extremely large

variation between tests in the determined Poisson’s ratios. A rudimentary approach was taken

to deal with this variation, by simply taking the average Poisson’s ratio ν12 from the warp

tests. It was then assumed that this average Poisson’s ratio was a constant in the numerical

models. The average Poisson’s ratio of the VALMEX® 7318 was found to be 0.136, while

0.072 was the average Poisson’s ratio for CF0700T. The transverse displacements from the

uniaxial tests and FE models are presented in the results section of this paper.

It is important to consider the effects of the Poisson’s ratio on the FE models before

characterizing the non-linear orthotropic material models. A sensitivity study was performed

on the axial loads and traverse displacements of the numerical models in the warp, fill, and

45◦ bias material directions. The sensitivity of the axial load to Poisson’s ratio is seen in

Fig. 2-5. It is noted that the warp and fill uniaxial models are hardly affected by changes in

ν12, while the 45◦ bias uniaxial test is strongly linked to the value of ν12. The sensitivity of the

transverse displacement to Poisson’s ratio is presented in Fig. 2-6. As expected the transverse

displacement of the material warp and fill uniaxial tests are dependent on ν12. The 45◦ bias

uniaxial test appears to have similar sensitivity to the Poisson’s ratio in both the transverse

and axial directions. With the sensitivity study it was concluded that the 45◦ bias FE model

was dependent on both ν12 and G12, as both variables strongly influence the 45◦ bias response.

There is a likelihood that this dependency may result in different combinations of ν12 and
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Figure 2-3. Poisson’s ratio (ν12) for various loads from the warp uniaxial test on VALMEX®

7318.

G12 producing similar behavior. Thus the simultaneous optimization of ν12 and G12, with the

45◦ bias FE model, may result in a non-unique solution.

2.4 Characterization Method 1: Direct Stress-Strain Approach

The first method for characterizing the non-linear orthotropic material model uses stress

and strain to determine stiffness moduli as a function of strain. The engineering strain values

were calculated from the virtual strain gauges on all of the uniaxial tests. The engineering

stress values were calculated by dividing the total load by the initial cross sectional area of the

test specimens. Engineering stress and strain are used as opposed to true stress and strain,

because the non-linear orthotropic material model does not account for through thickness

change of the material. Thus the FE model is not capable of determining either true stress or

true strain. In addition, the thickness change of the materials during the uniaxial tests were not

measured.

26



0 200 400 600 800 1000 1200

Load (N)

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

P
o
is

so
n

's
 r

a
ti

o
Test 1
Test 2
Test 3
Test 4
Test 5
Average

Figure 2-4. Poisson’s ratio (ν12) for various loads from the warp uniaxial test on CF0700T.

The stress-strain data from the uniaxial tests on the two materials is presented in Figs. 2-

7 and 2-8. Data points in the figures are from all five uniaxial tests. A polynomial was fitted

to the stress-strain data for each material direction using the least squares method. The data

set contained each data point from the five uniaxial tests. It was useful to force the polynomial

through the origin by removing the vertical intercept, because the FE model will only start

from a zero stress-strain state. Different order polynomial fits were attempted. It was found

that a fourth order polynomial had the lowest root mean square error for the warp uniaxial

stress-strain behavior, while third order polynomials resulted in the lowest error values for the

fill and 45◦ bias behavior. It is noted that the polynomials are excellent fits to the experimental

stress-strain data. Both the coefficient of determination and the root mean square error of the

fitted polynomials were used to quantify the quality of fits. The stress-strain polynomials are

defined by Eqs. 2-1 - 2-3, where terms α0 - α9 represent the coefficients determined from the

least squares fit.
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Figure 2-5. The sensitivity to Poisson’s ratio of the axial load in the FE models of the warp,
fill, and 45◦ bias uniaxial tests.

σwarp(ε1) = α0ε1 + α1ε
2
1 + α2ε

3
1 + α3ε

4
1 (2-1)

σfill(ε2) = α4ε2 + α5ε
2
2 + α6ε

3
2 (2-2)

σ45◦bias(γ12) = α7γ12 + α8γ
2
12 + α9γ

3
12 (2-3)

Each of the fitted polynomials were differentiated to obtain the stiffness moduli as

functions of strain for the non-linear orthotropic model. The stiffness moduli are defined

by Eqs 2-4 - 2-6, where terms β0 - β9 represent the variables of the non-linear orthotropic

material model. The stiffness moduli polynomials were calculated from a strain of zero, to

the maximum strain as experienced by the experimental tests in each material direction. The
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Figure 2-6. The sensitivity to Poisson’s ratio of the transverse displacement in the FE models
of the warp, fill, and 45◦ bias uniaxial tests.

vales of the stiffness moduli were then inputted as a table into the NLELAST material model

definition. The FE models are useful for providing some validation, and this is done by using

the defined material model in the FE models to compare with the experimental test results.

E1(ε1) = β0 + β1ε1 + β2ε
2
1 + β3ε

3
1 (2-4)

E2(ε2) = β4 + β5ε2 + β6ε
2
2 (2-5)

G12(γ12) = β7 + β8γ12 + β9γ
2
12 (2-6)
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Figure 2-7. The engineering stress and strain values with fitted polynomials for
VALMEX® 7318.

2.5 Characterization Method 2: Inverse Analysis Load-Displacement

As an alternative method, an inverse analysis was performed to find a non-linear

orthotropic material model that matches the virtual strain gauge load-displacement response.

The material parameters (β terms of Eqs. 2-4 - 2-6) are initially guessed. Then an optimization

routine is used to minimize the difference between the load-displacement of the FE models and

the experimental tests. The goal of the inverse analysis is to find the best material parameters,

such that the FE model matches the experimental load-displacement response.

The load strain gauge displacement relationships can be seen in Figs. 2-9 and 2-10.

The figures contain data points collected from all five uniaxial tests in a material direction.

A polynomial, represented by the solid line, was fitted to the test data in each material

direction. These polynomials were used in place of the experimental data to characterize

the non-linear orthotropic material model. The experimental data from multiple runs were
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Figure 2-8. The engineering stress and strain values with fitted polynomials for CF0700T.

considered simultaneously, as the polynomials were fitted to the entire collection of data

points. The polynomials were of excellent fit, as the lowest coefficient of determination of the

polynomials was 0.959. Working with the polynomial is preferred over the data points, because

the polynomial can be evaluated anywhere in the displacement range, so no interpolation would

be needed between data points. The polynomials are used in place of the experimental data for

the inverse analysis, for convenience and due to the high quality of fit.

Optimization is used to determine the best non-linear orthotropic material model by

minimizing the difference between the physical uniaxial tests and the FE models. The uniaxial

FE models are considered simultaneously to compute a single error value that describes the fit

of the FE models to the virtual strain gauge test results. Design Optimization Tools (DOT)

[38] wrapped in a Python script is used to run the FE models and determine the optimum

material parameters.
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Figure 2-9. Load strain gauge displacement values for the uniaxial tests in the warp, fill, and
45◦ bias material directions with fitted polynomial for the VALMEX® 7318.

Root mean square (RMS) error is used to determine the error between the FE model and

the physical tests. The polynomials fitted to the load-displacement virtual strain gauge data

from the physical uniaxial tests are represented by Pwarp, Pfill, and Pbias. The FE models use

100 evenly spaced displacement increments when simulating a uniaxial test. Results of the FE

model are only available at these specific increments. It is important that these increments are

evenly distributed to avoid sampling errors, in which the error from a particular region of the

test was sampled more often because more results where available in this area than other areas.

A simple example of a non-linear FE model where this phenomenon would occur is any model

that utilized adaptive time stepping. At each of the 100 load increments of the FE model, the

load extracted from the FE model is represented by Fwarp, Ffill, and Fbias. The load from the
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Figure 2-10. Load strain gauge displacement values for the uniaxial tests in the warp, fill, and
45◦ bias material directions with fitted polynomial for the CF0700T.

polynomials is compared directly with the load of the FE model at the 100 FE increments.

Three RMS errors are calculated for each material direction, and can be seen in Eqs. 2-7 - 2-9.

ewarp =

√√√√√ 100∑
i=1

(Fwarp(i)− Pwarp(i))2

100
(2-7)

efill =

√√√√√ 100∑
i=1

(Ffill(i)− Pfill(i))2

100
(2-8)

ebias =

√√√√√ 100∑
i=1

(Fbias(i)− Pbias(i))2

100
(2-9)
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The three RMS errors can be combined into a single error value euniaxial. It is possible to

create the single error value by simply adding up the RMS of each material direction, though it

was found that the optimizations were faster when considering the sum of the square of RMS

from each material direction as seen in Eq. 2-10. Each material direction is considered equally.

It can be noted that weights can be added if matching the behavior of a particular uniaxial test

direction was more important than the other directions. A euniaxial value of 0.0 corresponds to

a non-linear orthotropic material model in which the uniaxial FE models match the polynomials

exactly. It is important to remember the fitted polynomials represent the experimental uniaxial

load-displacement test data.

euniaxial =
√

e2warp + e2fill + e2bias (2-10)

The overall objective function of the optimization can be expressed by minimizing the

overall error of the FE models load-displacement results. The ideal material model will

match the uniaxial virtual strain gauge load-displacement results exactly, while the best

material model is defined mathematically as having the lowest objective function value. This

optimization process is subject to two constraints, the first being that the moduli in the

material model must remain positive for the entire strain range because a negative moduli

for a positive strain is not sensible. The second being that all of the FE analyses are valid,

in which case Marc outputs an exit code for each analysis of 3004. This is important as the

optimization may attempt to try many material models that are numerically unstable, and

results in FE models that can only be partially completed. Thus when an error code of 3004

is returned, it means that the FE model converged on all 100 load increments. The overall

objective function can be seen in Eq. 2-11. The two constraints serve as logical flags for the

constrained optimization. When a constraint is violated, a value of 1 is fed into the algorithm,

while a value of -1 indicates a satisfied constraint. This type of true-false Boolean constraint

may be problematic for a gradient based optimization algorithm, however DOT deals with

Boolean constraints well by backtracking when encountering a violated constraint in the one
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dimensional search. It is important to mention that DOT’s approach works well, provided that

the optimization is started from a feasible point.

minimize: euniaxial

such that: E1, E2, G12 > 0 and

All Marc Exit Codes = 3004

(2-11)

The β terms of Eqs. 2-4 - 2-6 are the variables the optimizer will use to determine the

best non-linear orthotropic material model, however a reasonable starting point and the

variable bounds are unknown. Suitable variable bounds were approximated to be one order of

magnitude, larger and smaller, from the solution of the previous method. The bounds used

for the optimization of both materials are provided in Table 2-3. An initial optimization was

performed on β terms that began in the feasible region to satisfy the Boolean constraints.

DOT parameters were used in their default configuration, including gradient step size,

scaling, and convergence criteria. From the optimum of this initial optimization, a second

optimization was run with a gradient step size one order of magnitude smaller than DOT’s

default. The second optimization typically resulted in the lowest obtained objective function

for both materials. One can point out that a suitable starting point for the optimization

would be the resulting material model variables from the stress-strain method, however this

approach wasn’t used because it was the intention to demonstrate that the inverse analysis

could function independently of the stress-strain method. The Modified Method of Feasible

Directions (MMFD) algorithm proved to be the most reliable gradient based optimization

algorithm from the DOT library for the inverse problems considered here. It is wise to start the

optimizations from multiple starting points to ensure the best material model is found, and to

avoid selecting a local minimum in the design space as the best material model.
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Table 2-3. Optimization bounds used for the inverse analysis to determine the non-linear
orthotropic material model.

Variable Lower Bound Upper Bound

β0 0.25 2.0
β1 -0.01 0.01
β2 -0.001 0.001
β3 -0.002 0.002
β4 0.01 2.0
β5 -0.01 0.01
β6 -0.001 0.001
β7 70.0 700.0
β8 -50.0 50.0
β9 -4.0 4.0

2.6 Results

Two different methods were used to determine non-linear orthotropic material models for

VALMEX® 7318 and CF0700T. The β terms that define the material models are provided, and

the material models are compared directly. It is expected that the material models will produce

stress-strain and load-displacement relationships that differ from the experimental uniaxial

tests, because of issues with the continuum assumption at the large strains experienced. To

demonstrate these differences, the results of the FE uniaxial models with material models from

both methods are compared directly to the experimental test data.

The β terms that define the non-linear orthotropic material models are presented in

Table 2-4. Subtle differences in the values can be noted for the two different methods for a

particular material. The non-linear orthotropic material models are plotted together in Figs. 2-

11 and 2-12. The stress-strain method produced a material model that is similar to the inverse

load-displacement method. In addition, the stiffness moduli of the different materials appears

to be similar.

The non-linear orthotropic material models were used in FE models replicating the

experimental uniaxial test. It is important to understand the ability of the FE models to

replicate the behavior of the physical tests, before considering the material model in the
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Table 2-4. Variables for the polynomials that define the non-linear orthotropic material models
for the two types of PVC-coated polyester from the stress-strain and inverse
load-displacement methods.

VALMEX® 7318 CF0700T
Variable Method 1: direct Method 2: inverse Method 1: direct Method 2: inverse

β0 0.803338 0.808749 1.303904 1.007260
β1 -0.00204 -0.00207 -0.00474 -0.00258
β2 0.000218 0.000226 0.000679 0.000291
β3 -0.00059 -0.00058 -0.00274 -0.00085
β4 0.075277 0.076246 0.332784 0.346241
β5 0.000107 0.000114 -0.00037 -0.00045
β6 -8.2e-07 -7.5e-07 2.13e-05 3.09e-05
β7 149.5966 270.589 145.1017 337.0310
β8 -0.61890 -19.6316 -1.04362 -29.0470
β9 0.073223 0.553649 0.062623 0.892731

modeling of a structure. Thus the results of the FE models were compared directly to the

uniaxial test data.

The experimental stress-strain values are compared to FE results in Figs. 2-13 and 2-14.

For both materials, in the warp and fill directions, the non-linear orthotropic material models

do an excellent job at replicating the stress-strain behavior of the materials. Either the direct

stress-strain method or inverse load-displacement method produces a stress-strain curve that is

analogous to the experimental data in the warp and fill uniaxial test directions. Unfortunately

the same cannot be stated for the 45◦ bias uniaxial test. Both methods fail to capture the

behavior of the 45◦ bias test at high strains. For the CF0700T PVC-coated polyester, the

45◦ bias FE model was unstable and failed to converge to the maximum strain.1 This is why

in Fig. 2-14, the stress-strain curve resulting from the bias FE model terminates before 0.2

1 From the author’s experience, the only way to get the 45◦ bias model to converge with
this particular set of material model parameters is to use a coarser mesh. The convergence
problem is linked to an element becoming singular during the deformation. Generally when a
finer mesh is used, the number of singular elements increases. The results of the model with a
coarser mesh were not shown in this result section, because it would not be a fair comparison
with the other FE models.
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Figure 2-11. Non-linear orthotropic material models for VALMEX® 7318 from the direct
stress-strain and inverse load-displacement methods.

strain instead of the maximum 0.5 strain. The inverse load-displacement non-linear orthotropic

material model also severely over predicts the response of the bias extension test, though it

appears the inverse load-displacement method produces a material model that better represents

the 45◦ bias uniaxial test behavior.

The axial virtual strain gauge displacements are compared to the results of the FE models

in Figs. 2-15 and 2-16. Again in the material warp and fill directions, it can be noted that both

the direct stress-strain and inverse load-displacement methods produce non-linear orthotropic

models that match the physical uniaxial behavior. The inverse load-displacement method was

defined to match the load-displacement behavior, and effectively accomplishes this by matching

the load-displacement behavior of the experimental tests data for each material direction
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Figure 2-12. Non-linear orthotropic material models for CF0700T from the direct stress-strain
and inverse load-displacement methods.

almost exactly. The direct stress-strain method produces a non-linear orthotropic material

model that severely under predicts the load-displacement response of the 45◦ bias test.

The coefficient of determination was calculated for each comparison of the non-linear

orthotropic FE models to the experimental uniaxial data. As seen in Table 2-5, the inverse

load-displacement method produced similar coefficient of determinations. This suggests that

the inverse load-displacement method produced non-linear orthotropic material models that are

analogous to the direct stress-strain method. N/A in the table represents the FE models that

were unstable, and failed to converge.
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Figure 2-13. Stress-strain results of the FE models with the two different material models
compared to the experimental uniaxial data for VALMEX® 7318.
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Figure 2-14. Stress-strain results of the FE models with the two different material models
compared to the experimental uniaxial data for CF0700T.
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Figure 2-15. Virtual strain gauge results of the FE models with the two different material
models compared to the experimental uniaxial data for VALMEX® 7318.
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Figure 2-16. Virtual strain gauge results of the FE models with the two different material
models compared to the experimental uniaxial data for CF0700T.
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Table 2-5. Coefficient of determination for each stress-strain or load-displacement material comparison from the FE results using
the non-linear orthotropic material models.

VALMEX® 7318 CF0700T
Material comparison Method 1: direct Method 2: inverse Method 1: direct Method 2: inverse

R2 of warp stress-strain 0.97 0.99 0.99 0.94
R2 of warp load-displacement 0.96 0.99 0.98 0.99
R2 of fill stress-strain 0.92 0.95 0.97 0.99
R2 of fill load-displacement 0.92 0.95 0.97 0.99
R2 of 45◦ bias stress-strain 0.84 0.82 N/A 0.0
R2 of 45◦ bias load-displacement 0.71 0.98 N/A 0.99
Average R2 for method 0.89 0.95 N/A 0.82
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An excellent material model would be able to accurately predict both the axial and

transverse load-displacement material response. The transverse displacement of the

FE models were compared to the results from a virtual horizontal strain gauge on the

experimental uniaxial tests. It is seen that the non-linear orthotropic material model matches

the transverse load-displacement response of the materials in the warp direction, as seen

in Figs. 2-17 and 2-18. This suggests that the use and determination of the Poisson’s

ratio (ν12) adequately matches the response of both materials in the warp direction. The

transverse load-displacements, seen in Figs. 2-19 and 2-20, are poor and over estimated for

the fill uniaxial test. Potentially this shows that the non-linear orthotropic material model

behaves fundamentally different than the physical behavior of the PVC-coated polyester. It

is interesting to point out that the transverse comparison in the 45◦ bias direction yields a

different result, as seen in Figs. 2-21 and 2-22. It appears that the direct stress-strain method

doesn’t match the transverse behavior of the 45◦ bias extension test, while the material model

from the inverse load-displacement analysis matches the transverse displacement extremely

well at low strains. Though the good fit quickly deteriorates at higher strains, potentially

demonstrating the limitations of the non-linear orthotropic material model.

A lack-of-fit study was performed in Appendix A to determine whether the material

model adequately describes the data. The study considered two different variance estimators

to perform a lack-of-fit test on each of the six test cases. Lack-of-fit was only present in the

CF0700T 45◦ bias test. This indicates that the experimental data was not adequately explained

by the material model, and the region of interest is highlighted with residual plots. The cause

of lack-of-fit is due to the uniaxial test data being extremely compliant in the first mm of

displacement, that the FE model is incapable of replicating.

2.7 Conclusion

Non-linear orthotropic material models were determined for two different PVC-coated

polyesters. The material models were determined using two different methods. The first

method determined the non-linear orthotropic model by differentiating the stress-strain
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Figure 2-17. Transverse displacement of the FE models compared with the experimental warp
uniaxial test data for VALMEX® 7318.
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Figure 2-18. Transverse displacement of the FE models compared with the experimental warp
uniaxial test data for CF0700T.
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Figure 2-19. Transverse displacement of the FE models compared with the experimental fill
uniaxial test data for VALMEX® 7318.
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Figure 2-20. Transverse displacement of the FE models compared with the experimental fill
uniaxial test data for CF0700T.
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Figure 2-21. Transverse displacement of the FE models compared with the experimental
45◦ bias uniaxial test data for VALMEX® 7318.
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Figure 2-22. Transverse displacement of the FE models compared with the experimental
45◦ bias uniaxial test data for CF0700T.
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response from uniaxial tests. The second method utilized an inverse analysis that produced

a non-linear orthotropic material model through numerical optimization, by matching the FE

models to the uniaxial load-displacement response. The two approaches produce different

material model parameters, however at small strains the material behavior from the different

methods is comparable. Due to breakdowns in the plane-stress continuum assumption and the

large strains exposed in the uniaxial models, it is impossible to match the complete stress-strain

and load-displacement material responses at high strains with this material model.

The derived non-linear orthotropic models failed to capture the complete uniaxial response

in the 45◦ bias extension test for both PVC-coated polyesters. The direct stress-strain method

produced a non-linear orthotropic material model that matched the experimental stress-strain

response better than the material model from the inverse load-displacement method. While

the inverse analysis proved useful, as a method to accurately reproduce the load-displacement

behavior of the experimental bias test seen in Figs. 2-15 and 2-16. Though due to the

limitations of the non-linear orthotropic model, the inverse method produced a model that over

predicted the stress-strain response of the bias extension test. There is an effective trade-off

between matching either the stress-strain or the load-displacement response with the 45◦ bias

extension test at high strains, because the 45◦ bias test produces a complex load case that the

hypoelastic non-linear orthotropic material model is incapable of recreating.

The Poisson’s ratio (ν12) was determined using the transverse and axial displacements

from the warp uniaxial tests. It was demonstrated that by simply taking the average of

calculated Poisson’s ratios, a suitable Poisson’s ratio can be determined for the warp uniaxial

test. This was demonstrated for the material model by the traverse load-displacement results

of a warp uniaxial test, as seen in Figs. 2-17 and 2-18. For the warp uniaxial test, all non-

linear orthotropic material models matched the axial and transverse displacements excellently.

However the Poisson’s effect observed in the experimental fill and bias uniaxial tests is vastly

different from what the non-linear orthotropic material model is capable of offering. With

the combination of transverse displacement results for the fill direction in Figs. 2-19 and 2-20
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and the transverse displacement sensitivity study of Fig. 2-6, it was concluded that it was not

possible for the presented non-linear orthotropic material model to simultaneously match the

transverse displacements in both the warp and fill uniaxial tests.
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CHAPTER 3
SIMILARITY MEASURES TO IDENTIFY MATERIAL PARAMETERS FROM HYSTERESIS

CURVES

Sum-of-square based error formulations may be difficult to implement on an inverse

analysis consisting of multiple tension-compression hysteresis loops. Five alternative measures

of similarity between curves are investigated as useful tools to help identify parameters

from hysteresis loops with inverse analyses. A new algorithm is presented to calculate the

area between curves. Four additional methods are presented from literature, which include

the Partial Curve Mapping value, discrete Fréchet distance, Dynamic Time Warping, and

Curve Length approach. These similarity measures are compared by solving a non-linear

regression problem resembling a single load-unload cycle. The measures are then used to

solve more complicated inverse analysis, where material parameters are identified for a

kinematic hardening transversely anisotropic material model. The inverse analysis finds material

parameters such that a non-linear FE model reproduces the behavior from five experimental

hysteresis loops. Each method was shown to find useful parameters for these problems, and

should be considered a viable alternative when sum-of-square based methods may be difficult

to implement. It is important to consider multiple similarity measures in cases when it is

impossible to obtain a perfect match.∗

3.1 Introduction

The calibration of model parameters to find models which reproduce experimental

hysteresis tension-compression cycles is difficult. There are a wide variety of material models

implemented in commercial finite element (FE) software. Unfortunately the selection of

appropriate parameters for these models is not a simple process, despite the advancements

in experiential methods, constitutive models, and the FE method. In some applications

constitutive parameters can be determined by a curve fit from experimental data as done

∗ A previous version of this chapter was published in the International Journal of Material
Forming [39].

49



with a number of generalized polynomial strain energy models [40]. Alternatively full-field

displacement methods provided by non-invasive optical techniques have been used with the

virtual fields methods to identify constitutive parameters [41], [42]. Another solution has been

to use an inverse analysis to identify material parameters in a process of updating a FE model,

where material parameters are determined such that the FE model’s response best replicates an

experiment. The focus of this paper is on the objective function that quantifies the quality of

fit between two different responses.

In this context an inverse analysis refers to the process of using optimization to minimize

the difference between experimental data and a numerical model’s response. Some objective

function is used to quantify the differences between responses. A few of the first works related

to inverse analysis to determine material parameters include [1]–[5]. For various hysteresis and

hardening parameter identification problems, objective functions based on the sum-of-squares

have been used. While the use of a sum-of-squares objective function is widely established,

other similarity measures may be easier to work with when dealing with experimental hysteresis

loops.

It is well-established to use a sum-of-square based objective function with inverse analysis

to identify material parameters. Lederer, Igarashi, Kost, et al. [43] used a root means square

quality function to measure the difference between experimental and numerical magnetic

hysteresis curves. Haddadi, Bouvier, Banu, et al. [44] used a form of mean square error as

the cost function to identify kinematic hardening and micro-structural model parameters.

The mean square error compared the difference of stress and hardening rates between a FE

model and experimental data. Eggertsen and Mattiasson [45] used a weighted mean square

error to identify material parameters for hardening laws with an inverse analysis. Harth,

Schwan, Lehn, et al. [46] described using a weighted sum of differences between experimental

and numerical models to identify the optimum material parameters for inelastic constitutive

models. Rabahallah, Balan, Bouvier, et al. [6], Souto, Andrade-Campos, and Thuillier [7],

Yoshida, Urabe, Hino, et al. [8] used a weighted sum-of-squares objective function to identify
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material parameters from inverse analysis on hysteresis loops. De-Carvalho, Valente, and

Andrade-Campos [47] concluded that a weighted sum-of-squares objective function was more

appropriate than a single point objective function for complicated geometric phenomena

including necking, springback, and stress concentration.

A typical sum-of-squares is defined as

SS =
n∑

i=1

(
f(xi)− f̂(xi)

)2

(3-1)

where f is the experimental data, f̂ is the numerical model, and the difference is taken at the

same xi condition. Often differences in stress between the experimental and numerical data are

calculated for the same strain values [7], [44], [47]–[49].

Now consider the simple example in Fig. 3-1 of some potential noisy material load-unload

response accompanied with a numerical model that replicates that response. Initially in A) it

may appear trivial to apply the sum-of-squares, though when zooming into the data as shown

in B) it appears that the experimental data does not share mutual strain or stress values in

order to calculate the sum-of-squares. There is essentially no concurrent xi to calculate the

difference between the experimental data and numerical model.
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Figure 3-1. Example of a potential material load-unload response and the numerical model
replication of the response where A) shows the complete data while B) shows a
zoomed-in area of interest and the order of the experimental data points.
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Figure 3-2. Assessing the quality of the numerical model’s match of the experimental response
is difficult for material tension-compression-tension curves.

A tension-compression-tension test with experimental data and the results from a

numerical model is shown in Fig. 3-2. There exists some set of numerical model parameters

which will result in the numerical curve aligning with the experimental curve exactly. Often,

an optimization is run to find the best set of parameters that minimize the error between two

curves. Traditionally the error has been defined as a sum-of-square based objective function.

However, in this case it is not possible to directly apply a sum-of-squares function to quantify

the difference between the numerical model and experimental data. One problem is that there

are a different number of data points on the experimental curve than the numerical curve.

Additionally, there are no concurrent stress or strain values to take a difference of as required

by a sum-of-squares function. An alternative objective function is needed to measure the

similarity between the two curves.
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Several other methods have been proposed in response to the shortcomings of using

sum-of-squares to identify parameters from hysteresis loops. These methods will be discussed

in detail in Section 2. A new algorithm to calculate the area between curves is proposed and

compared with other measures of similarity from literature. The area algorithm is compared to

the discrete Fréchet distance, Dynamic Time Warping (DTW), Partial Curve Mapping (PCM),

and a Curve Length based objective function. The measures of similarity are minimized on

simple problems where it is impossible for the model to match the data exactly. Additionally,

these measures are used as the objective function in an inverse analysis to determine material

parameters for a kinematic hardening transversely anisotropic material model. The resulting FE

models replicate the experimental data from five hysteresis tension-compression loops. Artificial

noise is added to the problems to demonstrate the robustness of the measures to noise, and to

help distinguish the measures in an events where it is impossible to match experimental data

exactly.

3.2 Methodology

Inverse analysis have been used to identify material parameters for numerical models

[6]–[8], [44]–[46], [50], [51]. In general some experiment was conducted on a material (e.g. a

load-unload uniaxial test, or tension-compression test). Then a numerical model was created

which replicates the physical conditions of the test (e.g. an appropriately constrained FE

model). In the case of using a FE model, this process has been referred to as the FE model

updating (FEMU) method [52]. An inverse analysis determines parameters of the numerical

model by minimizing the difference between experimental data and the response of the

numerical model. Optimization is used to find the parameters by minimizing an objective

function which describes the quality-of-fit from the collection of parameters. Traditionally the

objective function has been based on a sum-of-squares error formulation when using an inverse

analysis to find material parameters. This work explores using Partial Curve Mapping (PCM),

Area between curves, discrete Fréchet distance, Dynamic Time Warping (DTW), and a Curve
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Length objective function proposed by Andrade-Campos, De-Carvalho, and Valente [23] as

measures of the similarity between two curves for inverse analyses.

It is important to distinguish between the inverse analyses that require a FE model to

continuously update, and non-linear regression problems which parameters are identified

from curve fits to experimental data. There are a number of generalized polynomial strain

energy models (including Mooney–Rivlin and Ogden hyperelastic material models) which can

be identified from curve fits [40]. Additionally, Martins, Natal Jorge, and Ferreira [53] used

non-linear regression to determine properties of various hyperelastic models for soft tissues.

There have been a variety of optimization techniques used to solve inverse analysis

and non-linear regression problems, including both stochastic and deterministic optimization

methods [54]. The focus of this work is to present a collection of objective functions that

may be particularly useful when performing an inverse analysis to identify material parameters

from hysteresis loops. Thus any optimization technique could be used, assuming the result is

close to the global optimum. It is worth to note that different optimization techniques which

appear to solve some inverse analyses well, may struggle on other particular inverse problems

as principle of the No Free Lunch theorem [11]. LS-OPT® [14], a general purpose design

optimization and probabilistic analysis toolbox, was used to solve the inverse analyses for this

study.

Three problems are proposed and solved in this paper by minimizing the PCM, Area,

discrete Fréchet, DTW, and Curve Length measures. The first problem illustrates the

differences between these similarity measures and a traditional least squares fit when fitting

a line to quadratic data and fitting a line to data with an outlier. The second problem is a

non-linear regression problem invented to illustrate finding material parameters from a single

load-unload cycle. The third problem is an inverse analysis to identify material parameters

for a kinematic hardening model. Separate optimizations are performed using either the

PCM, Area, discrete Fréchet, DTW, or Curve Length similarity measures as the objective

function. The intention is to demonstrate how each measure may be useful when identifying
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material parameters. The methodology goes on to describe the PCM, Area, Fréchet, and DTW

measures of similarity between two curves. It is important to note that the order of the data

points is important for these methods.1

3.2.1 Partial Curve Mapping

The Partial Curve Mapping (PCM) method was proposed by Witowski and Stander [55] to

identify material parameters with inverse analyses. PCM uses a combination of arc-length and

area to determine the similarity between curves, because sometimes the choice of parameters

changes the overall curve length. An example of where an experimental curve and numerical

curve have different overall lengths is seen in the material tension-compression-tension test

of Fig. 3-2. First the arc-length of the shorter curve is imposed onto a section on the longer

curve. Then trapezoids are constructed between the curves, and the areas of the trapezoids are

summed. This is repeated for 200 or so iterations, as various offsets of the short arc length are

imposed on the curve with the longer arc length.2 Trapezoids constructed between two curves

for an arbitrary offset can be seen in Fig. 3-3. The final PCM value is the minimum area from

all attempted arc-length offsets.

The PCM algorithm is implemented in LS-OPT and has been used to calibrate a variety of

material parameters. Venter and Venter [56] used the PCM method with an inverse analysis to

calibrate a hybrid material model capable of reproducing the orthogonal load-unload response

for plain woven polypropylene. Hassan, Maqbool, Güner, et al. [51] used the PCM method

1 Initially consider two identical curves discretized by identical data points. All of these
measures of similarity would return a value of zero. Now reverse the order of the data points
on one curve, and then all of these measures would return a large value.

2 Arc lengths can be iterated such that for the first iteration the arc length of the longer
curve is only considered from the beginning of the data to the end of the arc length on the
shorter curve. The next iteration would again consider only the shorter arc length of the
longer curve, but only after some offset from the beginning of the longer curve. The process
is repeated until an offset is used such that the last data point of each curve is considered.
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Figure 3-3. The PCM method constructs trapezoids between the two curves for every possible
offset.

to calibrate material parameters for the same kinematic hardening model (MAT_125) used in

Section 3.3.3. In LS-OPT PCM is referred to as a curve matching algorithm [14].

Though the PCM method has proven a useful tool for material calibration problems, there

are some limitations. The PCM method performs poorly when the data has noise, as noise

artificially increases the arc length. The LS-OPT manual recommends to reduce noisy data

with a filter prior to using the PCM method [14].

3.2.2 Area Between Two Curves

Two curves are generally discretized into a time-series of ordered data points. An

algorithm is proposed in this paper to approximate the area between two curves. The algorithm

constructs quadrilaterals between two curves and calculates the area for each quadrilateral.

The details of the area algorithm is presented in Appendix B.
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Two curves that are being compared require the same number of points in order to

construct quadrilaterals to approximate the total area between curves. If one curve has fewer

data points than the other curve, data points are added until both curves have the same

number of data points. It was chosen to add, rather than remove points to avoid any loss of

information for general problems. While there are many ways to add artificial data points to

the curve, a simple approach was taken which adds an artificial data point by bisecting two

points. The location for the bisection was chosen based on the largest Euclidean distance

between two consecutive points. Points are added to the curve in this fashion until both curves

have the same number of points.

Polygons assume that there is a straight line between any two points. This straight line

assumption is important, because adding additional points through the linear interpolation

doesn’t change the area between the two curves. For instance you can split a pentagon into

two quadrilaterals, and the area of the two quadrilaterals will be exactly equal to the area of

the pentagon. The adding of additional points is just used to aid in the facilitation of the area

approximation. As the number of data points on both curves increases, so does the accuracy of

the area approximation.

A simple demonstration of the Area method is shown in Fig. 3-4, where quadrilaterals are

constructed between experimental and numerical data. The numerical simulation yields four

data points while the experimental data has five points. An artificial data point was added to

the numerical data by bisecting the two consecutive points with the largest Euclidean distance,

such that both curves have the same number of points. Four quadrilaterals are then created

between the curves by taking consecutive pairs from each curve. Since each quadrilateral is a

simple quadrilateral, Gauss’s area formula is used to calculate the area of each quadrilateral.

The quadrilateral areas are summed to give the effective area between curves.

The area between two curves is a positive value (A ≥ 0). This is true even when the two

curves considered cross each other. It is possible for a curve that is slightly above the desired

curve to have the same value as a curve that is slightly below the desired curve. Whether
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Figure 3-4. The Area between two curves is approximated by summing the quadrilaterals. An
artificial point is added to the numerical model, such that both curves have the
same number of points.

the curve is over or under the desired curve doesn’t matter, however what does matter is the

amount of mismatch between the two curves. Minimizing the area between the two curve

results in minimizing the amount of mismatch between two curves.

3.2.3 Fréchet Distance

The Fréchet distance is a measure of similarity between curves which preserves the time-

series order of data along the curves. The measure was first defined in Fréchet’s PhD thesis

[57]. Intuitively the Fréchet distance has been described as the length of a leash in a walking

dog problem. Suppose a man is walking a dog, where the man is constrained to stay on one

curve and the dog on another. The man and dog can vary their velocities independently at

all times. Both the man and the dog are limited to either moving forward or stopping along
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their curves, as it is forbidden for them to move backwards. The Fréchet distance reflects the

shortest possible leash connecting the man and dog sufficient to complete the walk along the

curves.

Eiter and Mannila [58] described an algorithm to approximate the Fréchet distance by

considering the line segments between the end points of two polygonal curves. This algorithm

is referred to as the discrete Fréchet distance, or the coupling distance. If we are to consider a

curve P with p number of points and a curve Q with q number of points, the discrete Fréchet

distance has a fixed quadratic run time of O(pq). There has been work to reduce the quadratic

run time cost of the discrete Fréchet distance [59], [60]. The computational cost is generally

not a concern when considering a typical test data, and is only mentioned to understand how

the algorithm scales with the number of data points. The discrete Fréchet distance has been

used in a variety of applications, including the identification of unique atomistic motions [61].

The difference between the discrete Fréchet distance and the true Fréchet distance

is at most the length of the longest edge along the polygonal curves [58]. It is worthwhile

to note that algorithms to obtain a more accurate Fréchet distance do exist, but at the

cost of additional computational expense. For instance Alt and Godau [62] presented an

algorithm that computes the Fréchet distance using a parametric search with a run time of

O(pq log(pq)). The discrete Fréchet distance was deemed to be a reasonable approximation

for this work because the upper bounded error was small with the provided data. The Python

MDAnalysis library includes a discrete Fréchet distance function that was used in this work

[61].

3.2.4 Dynamic Time Warping

Dynamic Time Warping (DTW) has been a popular method for pattern recognition, and

particularly useful for speech recognition [63], [64]. DTW first calculates the distance between

points of one curve onto the other curve. If we are to consider a curve P with p number of

points and a curve Q with q number of points, for each p point the distance between p and

every q point is calculated. This has the same quadratic complexity of O(pq) as the discrete
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Fréchet distance. The goal of DTW is to find the path between curves that minimizes the

cumulative distance between points.

Imagine traversing the path of both curves simultaneously, where you start from the

first index of each curve. The distance between the points at the first index of each curve is

your first distance. You are then presented with three choices: (1) move to the second index

of curve P , (2) move to the second index of curve Q, or (3) move to the second index of

curve P and the second index of curve Q. The second distance will be either the distance

between the points of the second indexes, or the distance between the point of the second

index on one curve and the first index on the other curve. This process is repeated until you

are on the last index of each curve. The optimal DTW distance represents the path with the

smallest cumulative distance once you have reached the last index of each curve. To aid in the

visualization of DTW consider the arbitrary curves in Fig. 3-5 A. The optimal DTW path is

shown in Fig. 3-5 B, where the DTW distance is the value of the tile in the top right (at the

last index of each curve).
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Figure 3-5. Arbitrary curve P and curve Q shown in two dimensions in A) where the optimal
DTW path is shown in B) where each tile represents the cumulative distance from
the first index of each curve.
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The R dtw package was used in this work [65]. In a case where a very large number of

points are considered, it may be worthwhile to consider the FastDTW algorithm by Salvador

and Chan [66]. FastDTW is a popular approximation of the DTW distance with linear cost,

although the reduced computational expense comes at the cost of reduced accuracy. The

quadratic computational expense is not a concern for typical hysteresis curves, but it is

worthwhile to note how the method may scale provided a very large number of points.

3.2.5 Curve Length

Cao and Lin [22] suggested an objective function with automatic weighting factors to

determine material constants that match experimental data. Andrade-Campos, De-Carvalho,

and Valente [23] took the objective function of Cao and Lin and extended it to be applicable

for negative and zero stress and strain values. Additionally, Andrade-Campos et al. introduced

a novel curve length attribute to be included in the objective function to quantify the quality

of fit between two curves. The final Curve Length objective function is suitable for identifying

parameters for a variety of cases, including cyclic hysteresis tests and Bauschinger tests.

This Curve Length inspired objective function works on the principle that a point on

one curve can be compared to its corresponding curve length location on the other curve.

Essentially the stress and strain values from a cyclic tension-compression-tension test can be

expressed as a function of the curve length distance from the first data point. A data point on

the experimental curve will have some curve length distance that can be expressed as a ratio

from the total experimental curve length. The stress and strain values from two curves are

compared at the same curve length ratios, and an objective function is formulated as the sum

of the natural log of these squared deviations.

An illustration depicting this process is provided in Fig. 3-6. A corresponding data

point on the numerical model is calculated at the equivalent curve length location of the

experimental curve. Squared residual values are then calculated as function of both the

dependent and independent variables. The sum of these squared residuals is used to quantify

the difference between the two curves.
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Figure 3-6. Depiction of a Curve Length inspired objective function. The r2i residuals are
summed for the N data points to quantify the difference between the two curves.

The implementation of the Curve Length measure used in this work is the OF2 from

[23], which was seen to better identify a hyperelastic and elasto-viscoplastic models. This

formulation is self-normalizing, and utilizes a natural log transformation. This OF2 objective

function is referred to as the Curve Length method throughout this paper.

3.3 Results

The different similarity measures were first compared to minimizing the sum-of-squares to

clearly illustrate the difference between methods. The first example fits a straight line to linear

data with a single outlier and fits a straight line to quadratic data. Optimization is used to find

the best line according to the Area, PCM, discrete Fréchet, DTW, and Curve Length similarity

measures.
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The similarity measures were then used in optimizations to identify parameters from a

single load-unload cycle. This problem was invented for the purpose of illustrating the methods

on a simple example. There is a known analytical solution. Having a known solution makes

it easier to test both the optimization strategy, and the implementation of each similarity

measure.

Lastly, material parameters were identified for a kinematic hardening transversely

anisotropic material model. Optimization was used to find the parameters such that the

FE models reproduce experimental tension-compression-tension cycles. Test data is from five

different tension-compression-tension cycles. The material exhibits stress-strain hysteresis, and

the results compare the differences between measures of similarity. To see how the objective

functions deal with noise, the inverse problems are solved again with artificially added noise to

the desired curves.

In general, it is impossible for numerical models to match experimental data exactly. It

is not likely that a material model matches reality perfectly, and even if it does, measurement

errors are likely to foil a perfect fit. An outlier, linear model to quadratic data, fitting with

noise, and the kinematic hardening problem are just examples of when obtaining a perfect fit

is not possible. These examples illustrate how the best model may be dependent upon the

similarity measure chosen for many practical problems.

3.3.1 Straight Line Illustrative Fit

In this section a straight line is fit to linear data with an outlier, and to quadratic data

using the five measures of similarity. The fits are performed using a global optimization routine.

The similarity measures were minimized using the genetic algorithm (GA) implemented in

LS-OPT with the default parameters. The GA serves as the global optimization routine to find

the best line.

A straight line was fit to ten data points originating from a straight line, with one of the

data points being modified to resemble an outlier. The Area, PCM, discrete Fréchet, DTW,

and Curve Length similarity measures were minimized to find the line of best fit to the data.
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The methods are compared to the line resulting from minimizing the sum-of-squares through

a least squares fit. Results from the different similarity measures are presented in Fig. 3-7.

The Area and DTW methods entirely ignore the single outlier, as expected between methods

that sum the absolute distances (L1 norm). Minimizing the discrete Fréchet distance creates

a line that is in-between the outlier and the remaining data points, as can be expected by a

method that minimizes the maximum distance (L-infinity norm). Minimizing the PCM method

produced a line with a steeper slope than the trend, as the method was accounting for the

increased arc-length from the outlier. The sum-of-squares optimum represents a line that is an

average preserving compromise between the true trend and the outlier, as expected from an

L2 norm. The Curve Length similarity measure produces a line that is initially similar to the

sum-of-squares optimum, but dips slightly below the data points at the end.

The results of fitting a line to quadratic data are shown in Fig. 3-8. First a fit was

performed to the original data. Then a second fit was performed, where the data was first

normalized such that each variable ranged from zero to one. The fits were determined by

minimizing the similarity measures with the GA. The discrete Fréchet distance and DTW

methods were severely affected by the normalization. Looking at the normalized quadratic

data it is seen that the discrete Fréchet distance resulted in a line that was just above the

sum-of-squares solution, while the Area and DTW methods result in a line just bellow the

sum-of-squares solution. Minimizing the Area and DTW produced the same results when

fitting quadratic data or fitting a line with an outlier, as seen in Fig. 3-7 and Fig. 3-8 B). The

PCM method resulted in a line with a different slope than the other methods. Normalization

is built into the PCM and Curve length methods, so in both cases they resulted in the same

fit. Normalization did not appear to affect the Area method as the results with and without

normalization were the same.
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Figure 3-7. Results of fitting a line to linear data with central outlier by minimizing different
similarity measures. The outlier was exaggerated to clearly show the differences
between similarity measures.

3.3.2 Single Load-Unload Cycle Example

A single load-unload cycle problem is proposed as the following piecewise equation
exp(β0x) + β1 0 ≤ x ≤ 1.0

2.0 exp(β2x)− 2.0 exp(β3) + exp(1.0)− 1.0 1.0 ≥ x ≥ 0.62

(3-2)

with four unique β parameters to identify. This piecewise function with added noise was seen

in Fig. 3-1. The true values and optimization bounds of the problem are found in Tab. 3-1.

The problem is solved with and without noise. Artificially added noise was generated by taking

a randomly sampled array from the normal distribution of µ = 0.0 and σ2 = 0.05, and then

the array was added to the true response. The noise is added only to the dependent variable
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Figure 3-8. Results of fitting a line to quadratic data by minimizing different similarity
measures. The original data and results are presented in A), while B) shows the
results with normalized data.

(f(x)), and results in a signal-to-noise ratio (the ratio of the mean to the standard deviation

from noise) of 3.33.

Table 3-1. Parameter bounds and true values for the single load-unload cycle example.
Parameter Lower bound True value Upper bound

β0 0.0 1.0 10.0
β1 -10.0 -1.0 10.0
β2 0.0 1.0 10.0
β3 0.0 1.0 10.0

The genetic algorithm (GA) was used with the default parameters, except for the

maximum number of iterations which were increased from 100 to 200, because the optimizations

were still improving after 100 iterations. This optimization problem is more challenging in

terms of the number of function evaluations required to find a global optimum, than the

previous straight line fits. The GA was used to find the optimal β terms that minimize the

difference between some guess and the true values. The problem is solved by minimizing

either the Area, PCM, discrete Fréchet, DTW, and Curve Length methods. The GA iterations

are plotted against the objective function values in Fig. 3-9. When there isn’t noise, the

objective values are still improving at 200 iterations, and presumably heading to the known
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zero objective value. However, when noise is introduced we see that all objective functions stop

improving around 100 iterations.
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Figure 3-9. Plots of the objective values as a function of the iteration of the Genetic Algorithm
for the single load-unload cycle example.

All of the objective functions can be minimized to find the true solution. The resulting

curves from the best objective functions are shown in Fig. 3-10. However when noise was

present in the data the PCM method struggled, as the optimum objective functions from the

noisy data are seen in Fig. 3-11. DTW and the Area method produced a response that moves

through the center of the data points, which is nearly identical to a response by minimizing the

sum-of-squares. The line from the sum-of-squares solution is actually covered up by the lines

from the DTW and Area methods. The response from the discrete Fréchet distance moves

through the data points, but does not remain in the center of the noise. The PCM method

was not capable of finding reasonable parameters with the noisy data. The Curve Length

method produced a response that travels on the outer edge of the noise.

The problem with noise is interesting because it is not possible for any of the objective

functions to equal zero. Each optimization found their own best objective function (i.e.

minimizing DTW resulted in the best DTW value, minimizing PCM resulted in the best PCM

value, etc.). Visually some of these resulting curves (Area, DTW, and sum-of-squares) appear

to be better fits than the other objective function values. These fits are just the best according
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Figure 3-10. The curves resulting from the best found objective function values and the
original data.

to the minimized objective function. When it was impossible to obtain a perfect fit, the

different measures of similarity produced different results. However, each measure of similarity

produced nearly identical results when it was possible to obtain a perfect fit.

3.3.3 Kinematic Hardening Parameter Identification from Five Cycles

The kinematic hardening parameter identification problem used in Witowski and Stander

[55] is revisited to compare the performance of the Area, PCM, discrete Fréchet, DTW, and

Curve Length methods. The LS-DYNA material model MAT_125 is calibrated using a single

element, and the nine unknown material parameters are determined by matching the response

of the LS-DYNA model to five experimental hysteresis tension-compression-tension curves. A

single objective function is created by summing the similarity measures between the numerical
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Figure 3-11. Curves resulting from the best found objective function values using the noisy
data.

model results and the test cycles. Again ten optimizations are run in total, two for each

method. The problem is solved with the experimental curves as is, and with artificially added

noise.

MAT_125 is based on the kinematic hardening rule developed by Yoshida and Uemori

[48], with the addition of allowing the Young’s modulus to vary as a function of the effective

plastic strain [67]. The manual recommends to use MAT_125 with an implicit FE model

when modeling a metal forming process [67]. The material model is not time dependent, thus

comparisons of time from the FE model to quasi-static test data may not be relevant.

The parameters are determined in a two part optimization process in an attempt to find

the global optimum. First a metamodel (or surrogate) based optimization using the sequential

domain reduction (SDRM) technique is run [12]. The SDRM can find reasonable parameters
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after just a few iterations, though it is not guaranteed to find the true global optimum. The

optimum from SDRM is then used as one individual (or the starting point) for a genetic

algorithm (GA), in hopes that the GA will find the global optimum. The GA terminates

when the relative objective function improvement was less than 0.1% for 100 consecutive

iterations. This overall strategy requires a large number of function evaluations on multiple

non-linear FE models. If the number of function evaluations is a concern, it may be reasonable

to consider using just the SDRM to find a good-enough solution for a fixed number of function

evaluations. The optimization bounds are presented in Tab. 3-2.

Table 3-2. Parameter bounds for the kinematic hardening material model.
Parameter Lower bound Upper bound

CB 500 1000
SIGY 450 600
C 90 300
K 10 35

RSAT 250 550
SB 120 400
H 0.5 1.2
C1 0.01 0.1
C2 0.05 0.5

The optimizations are performed with and without artificial noise to the test data. The

noise was added at random from a normal distribution of µ = 0.0, σ2 = 35. The noise is

added only to the stress values. The signal-to-noise ratio (consider the mean of the absolute

stress value over the standard deviation of the added noise) from the first tension-compression-

tension cycle to the last cycle is: 83.1, 105, 117, 127, and 133. These large values suggest

that the signal of the hysteresis loop was much stronger than the added noise. It isn’t known if

this amount of added noise is realistic of an experimental test, but the added noise will provide

insight into how the the different similarity measures behave. The added noise represents a

case where it is impossible for the numerical model to match the test data exactly. The original

test data that was used by Witowski and Stander [55], along with the artificially added noise

can be seen in Fig. 3-12.
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The data was first normalized for DTW and Discrete Fréchet measures which were shown

sensitive to noise in Fig. 3-8. The normalization strategy is similar to the PCM method, which

sets the stress-strain values of the test curve between zero and one.
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Figure 3-12. The five cycles of the original test data as well as the five cycles with artificially
added noise.

The numerical model optima responses are seen in Fig. 3-13, and the results with the

added noise in Fig. 3-14. The PCM method was unable to find reasonable material parameters

when noise was added to the test data. Though the results of using Area, discrete Fréchet,

DTW, or Curve Length as objective functions appears to produce a stress-strain curve that falls

within the noise of the hysteresis data. To view the results of individual hysteresis cycles refer

to Appendix D. Qualitatively, the results from the Area, DTW, or Curve Length method appear

to match the test data the best. While it appears that the Area, Discrete Fréchet, or DTW

methods appear to match the test data with added noised the best.

The parameter values found from each optimization are presented in Tab. 3-3. Each

method recommended different material parameters with a considerable amount of variation.

Additionally, variation is present when comparing the results with noise to the results without

noise. There is no clear consensus as to what the best set of parameter values should be.
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Figure 3-13. Material parameter identification optima for MAT_125 using various measures of
similarity.
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Figure 3-14. Material parameter identification optima for MAT_125 using various measures of
similarity when noise was artificially added to the test data.

The resulting optima by minimizing one objective function were evaluated by the other

measures of similarity, and presented in Tab. 3-4 and 3-5. Each global optimization was
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successful in finding it’s own best similarity measure. For the results without noise, the Area,

DTW, and Curve Length methods appear to have the most similar objective values.

Line plots between the results of the first SDRM optimization were performed and shown

in Appendix C. The line plots indicate whether multiple local optima exist in-between the

optima found. Local optima was occasionally found by line plots when considering the cases

without added noise (e.g. Fig. C-1 A). In general there were fewer local optima (indicated by

line plots) when considering the hysteresis loops with artificially added noise.

Table 3-3. Parameters determined from minimizing different objective functions for the
kinematic hardening problem. Values at a lower or upper bound do not imply that
the similarity measures produce similar material parameters.

Objective function CB SIGY C K RSAT SB H C1 C2

without noise
Area 629 467 160 35 414 196 0.54 0.01 0.12
PCM 687 450 127 24 508 174 0.56 0.01 0.15
Fréchet 763 454 93 23 481 123 0.89 0.02 0.21
DTW 604 451 202 35 493 209 0.50 0.01 0.12

Curve Length 619 451 173 35 389 215 0.51 0.01 0.13
with artificially added noise

Area 678 450 119 28 328 143 0.50 0.01 0.17
PCM 1000 450 132 35 550 343 1.19 0.01 0.29
Fréchet 720 450 132 11 421 120 0.89 0.02 0.18
DTW 642 451 164 35 407 166 0.50 0.01 0.15

Curve Length 695 472 300 10 550 190 1.19 0.01 0.41

Table 3-4. Without noise: Objective function values from different optimizations on the
kinematic hardening problem. The first column of a row indicates what objective
function was minimized by the optimization, while the other columns indicate the
other objective function values.

Optimization Method value
objective Area PCM Fréchet DTW Curve Length

Area 45.1 6.3×10−3 0.36 22.5 4.4
PCM 59.7 3.3×10−3 0.37 27.9 7.5
Fréchet 78.3 4.5×10−3 0.34 35.8 10.7
DTW 45.5 5.7×10−3 0.36 21.7 4.6

Curve Length 45.5 4.9×10−3 0.36 22.6 4.3
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Table 3-5. With added noise: Objective function values from different optimizations on the
kinematic hardening problem. The first column of a row indicates which objective
function was minimized by the optimization, while the other columns indicate the
other objective function values.
Optimization Method value
objective Area PCM Fréchet DTW Curve Length

Area 119.0 1243.8×10−3 0.42 30.2 29.2
PCM 434.1 832.1×10−3 1.59 176.2 50.3
Fréchet 123.7 1248.3×10−3 0.40 30.6 28.7
DTW 120.8 1208.6×10−3 0.44 28.7 28.2

Curve Length 150.6 1062.2×10−3 0.59 47.0 24.9

The results without noise did not find parameters for the MAT_125 model which result

in a zero objective function value. An additional optimization was run by picking a known set

of MAT_125 parameters, and setting the test data to be the result of the FE models from

these known parameters. The SDRM optimization produced stress-strain curves that resembled

virtual test data. Then when the GA was used to improve upon the SDRM results, it was

observed that all objective values were heading to zero. If a perfect fit exist, then any of the

measures of similarities can be used to identify the parameters.

A five fold cross validation (CV) study was performed on the kinematic hardening

parameter identification problem while trying to determine the differences between similarity

measures. This means that the inverse problem was solved using four of the five hysteresis

loops, and then validated on the remaining hysteresis loop. The processes was repeated five

times such that each loop was used as the validation once. Only the SDRM optimization

method was used, because of computational cost restrictions. When these five fold CV results

were compared with the initial SDRM results, it was observed that not including a hysteresis

loop as data in the inverse problem resulted in material parameters that aren’t as good at

matching that particular hysteresis loop.

This kinematic hardening parameter identification problem is used as an LS-OPT training

example. The data, models, and optimization routines are available upon request.
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3.4 Discussion

The Area, discrete Fréchet, and DTW measures of similarity are similar to traditionally

statistical measures of similarity between curves. The discrete Fréchet distance is similar to the

maximum error, as both methods (when minimized) are sensitive to outliers. Despite different

rationale, the Area and DTW methods are similar to the sum-of-errors (or mean absolute

deviation). The Area and DTW methods could be modified to produce analogous results to

the sum-of-squares solution. This could be accomplished by squaring the distances in DTW, or

by squaring the areas in the Area method. Together these methods are similar to the standard

L1 norm, L2 norm, and L-infinity norm with an advantage of being particularly useful for

identifying unique hysteresis loops.

It is worthwhile to note that all of the similarity measures would return an objective

function value of zero for the exact β parameters when considering noiseless data. For

perfect global optimization, there will be a non-zero residual for an imperfect model. There

is always the potential that an imperfect model could be be improved with a better physical

understanding of the problem (e.g. selecting a better material model, or more appropriate

FE model). When the noisy data is considered there will always be a non-zero objective

function value. In all examples, the PCM method was more sensitive to the noise than the

other methods. The PCM method is known to be sensitive to noise, thus the LS-OPT manual

recommends to use a noise filter to pre-process the curve before using PCM. If it was possible

to completely filter out the noise, then the results without noise would be identical to the

results with noise for all problems.

The discrete Fréchet distance and DTW produced different straight lines when considering

the normalized and original quadratic data, as shown in Fig. 3-8. This was a result of the

algorithms focusing on removing the distance in the variable that was an order of magnitude

larger than the other variable. It is recommended to first normalize stress-strain responses

when applying discrete Fréchet distance and DTW as stress can be orders of magnitude larger
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than strain. It is worthwhile to mention that normalization is built into the PCM and Curve

Length methods by default.

Using partial matching algorithms, such as PCM, may sometimes be preferable to the

other measures of similarity. For instance consider a case where the numerical model was

only replicating the loading stage of a hysteresis loop. In this case, PCM is the only method

that can be applied to find a partial match of just the initial tension section of the hysteresis

loop shown in Fig. 3-15. The PCM is the only measure of similarity in this paper that would

return a zero value for this partial mapping. Tormene, Giorgino, Quaglini, et al. [68] proposed a

partial matching DTW strategy that is available in the R dtw package. Partial matching DTW

was not covered in this study, but it may be of interest for future work.
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Figure 3-15. Partial mapping example where the PCM objective function value is zero between
numerical and experimental curve.
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Each measure of similarity presented has its own advantages when being used for

parameter identification. The PCM method is capable of matching partial responses. The

Discrete Fréchet distance would be useful at reducing the maximum error at any location of

two curves. The Area and Curve Length methods appear to have a smoother design space

than the other measures when comparing the line plots in Appendix B. It may be preferable

to use gradient based optimizations on smooth objective functions which would have fewer

local minima than non-smooth objective functions. A qualitative comparison of the objective

functions is presented in Tab. 3-6.

Table 3-6. A qualitative comparison of the objective functions covered in this work.
Objective Partial Resistance Resistance Function
function matching to noise to outliers shape

Area no good good smooth
PCM yes poor poor non-smooth
Fréchet no fair poor non-smooth
DTW see [68] good good less smooth

Curve Length no fair good smooth

Consider a problem where the data is perfect, meaning that there is no noise and all data

points are trusted. All five similarity measures presented will return zero for a numerical model

that matched the data exactly. Ideally this would represent a global optimum for the numerical

model. If the numerical model was unable to replicate the behavior from just one experimental

data point, then each similarity measure may have a unique global optimum recommending a

different set of model parameters. The differences in identified parameters would be the result

of the interpretation of each similarity measure. A comparison of the measures of similarity

for imperfect fits was best illustrated in section 3.1, with Figs. 3-7 and 3-8. This is reasonable

motivation to consider multiple similarity measures, as often it is impossible for numerical

models to match experimental data exactly. For example, it could be impossible to obtain a

perfect match if the numerical model inadequately captured the physics of an experimental

response, or if there are errors associated with the experimental response.
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3.5 Conclusion

Five different measures of similarity between two curves are presented. The PCM, discrete

Fréchet, DTW, and Curve Length measures are from literature. Additionally, a new algorithm

is presented to approximate the Area between two curves. These five methods offer advantages

over traditional sum-of-square methods, because they don’t require the numerical model to be

aligned with the experimental data. Additionally they may work particularly well with hysteresis

loops, load-unload cycles, or tension-compression tests. These similarity measures can be

considered as alternatives to error formulations based on the sum-of-squares, as they help

quantify the quality of fit between an experimental and numerical curve. These quantities can

be minimized in an inverse analysis to aid in the identification of material parameters. Note

that this work assumes that the curves are in a particular time-series order from an initial point

to a final point.

When there is no noise present in the data, the results of minimizing either the Area,

PCM, discrete Fréchet, DTW, or Curve Length similarity measures produce a reasonable

solution. If a perfect fit is possible, any single similarity measure can be used to find the

parameters that determine the perfect match. If it is impossible for the numerical model to

match the experiment exactly, each method may yield a different solution due to the different

physical interpretation of each method. For practical problems it is often impossible to match

the experimental data exactly. In these cases, it would be useful to have the best set of

parameters from multiple similarity measures. Differences between sets of material parameters

may provide an indication of the uncertainty associated with each parameter.
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CHAPTER 4
FITTING MATERIAL MODELS TO FULL DISPLACEMENT FIELD BULGE INFLATION

TESTS

A methodology is presented to fit material parameters in finite element (FE) models

using full displacement field data. Four bulge inflation tests were performed on a PVC-coated

polyester material. Digital image correlation (DIC) was used to capture the full displacement

field of the material. An inverse analysis was set up to find material parameters in a FE

model which replicated the full displacement field of the experimental test. Two different

objective functions were considered to quantify the discrepancy between the FE model and

test data. One function considered equal weight among displacement components, while the

other function weighted the discrepancies to balance different displacement magnitudes. The

resulting parameters, for isotropic and orthotropic models, were heavily dependent upon which

objective function was chosen. Additionally, cross validation was performed to perform material

model selection between the two material models. Similar to the material parameters, the cross

validation results preferred different material models depending upon which objective function

was being used.

4.1 Introduction

The finite element (FE) method has become an important design tool for membrane

structures, and selecting material parameters to represent complex material behavior is a

difficult task. This is especially true for the most complex and non-linear materials including

coated woven fabrics. Inverse analyses, or iterative schemes for FE model updating (FEMU)

have been used to find material parameters from complex load cases. Two different objective

functions were investigated when selecting material parameters from bulge inflation tests on

PVC-coated polyester. Objective function refers to how the discrepancy between the FE model

and test data is quantified, and material parameters are typically selected to minimize this

function. The objective function has an important effect on the material parameters selected

using this type of inverse analysis.
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PVC-coated polyester is a coated textile. It’s most commonly modeled as a continuous,

homogeneous, orthotropic material [69], which is largely dependent on the warp-to-fill stiffness

ratio [70]. The typical weave has the warp yarns pulled taught, while the fill yarns are woven

in-between the warp yarns. The fill yarns run orthogonal to the warp yarns. Various non-

linear models have been used in an attempt to better describe the behavior of the material.

Galliot and Luchsinger [33] proposed a non-linear material model based on the load ratio

between the material warp and fill directions. Ambroziak and Kłosowski [34] used a piecewise

linear orthotropic model, and Jekel, Venter, and Venter [24] used polynomials to describe the

non-linear elastic behavior of the material.

Biaxial tests are commonly used to characterize material parameters for structural

membrane materials [71]. Several studies [18], [19], [72], [73] have used bulge (or bubble

inflation) tests to induce an equal biaxial load on the material. These bulge tests typically

involve inducing a pressure on one side of a circularly clamped membrane material. The equal

biaxial load occurs at the apex of the deflected membrane for an isotropic material. The

measured pressure and displacements are then used to infer material parameters, by comparing

the results to a FE simulation.

A variety of applications [20], [21], [74] have used Digital image correlation (DIC) as

non-invasive deformation measuring technique. The technique uses the correlation between

consecutive images, from multiple cameras, to calculate a full 3D displacement field. For bulge

tests, DIC is an ideal tool to obtain a full 3D displacement field while not interfering with the

inflation or deflection of the membrane material.

Material parameters in various models have been identified using FEMU [2], [5], [75].

The process can be generalized by using optimization to find parameters in a FE model that

minimize the discrepancy between the model and experimental data. In a forward problem

parameters can be directly inferred from an experimental test. While an inverse problem

iteratively updates the FE model to find parameters that lead to responses that resembles the

experimental response.
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This work also investigates using cross validation to select the best material model when

performing FEMU. The idea is that cross validation could be used to determine whether

the isotropic or orthotropic material model generalizes the PVC-coated polyester better

in the complex load case. This is especially important for PVC-coated polyester, which is

not a homogeneous (or continuous) material, but modeled as one in the FE method. Cross

validation was performed using the two different objective functions described to select

material parameters from the experimental data.

The previous studies [72], [73] used only the height to determine material parameters

from bulge inflation tests. Machado, Favier, and Chagnon [18] used curvatures to determine

a stress tensor from bulge inflation tests to infer material parameters for an elastic material.

While these previous methods work well for a planar isotropic material, they are difficult to

extend to a directional dependent woven textile like PVC-coated polyester. Jekel, Venter, and

Venter [76] showed that it was possible to use the displacement field of a bulge test to select

parameters for a non-linear orthotropic material model using simulated experimental data.

Jekel [77] then used this process on polynomial displacement fields fitted to experimental data

at selected inflation pressures. These polynomial surfaces introduce an extra layer of error in

the material parameters. This work will find material parameters by fitting the full experimental

displacement field directly. A new approach is describe which allows for any data point in the

experimental displacement field be compared to a FE model, for any initial surface location and

inflation pressure. While [76] considered the discrepancy in the x, y and z displacements fields

to be equal weight, this work shows that substantially different orthotropic parameters occur

when less importance is given to the z discrepancies.
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4.2 Methods

Bulge inflation tests were performed using DIC on PVC-coated polyester.1 A FE model

was created to replicate the boundary conditions of the bulge inflation tests. Two different

objective functions are described. Each objective function represents a different method to

quantify the difference between the experimental data and FE model. The process to perform

the inverse analysis is briefly described. Cross validation is also discussed as a method for

selecting material models in this scheme.

4.2.1 Experimental Tests

The bulge inflation tests involve clamping a sample of membrane material into a circular

clamp. Pressure is then induced on one side of the material. The material deflections were

recorded using DIC. The DIC system used was the StrainMaster with DaVis [37], which was

capable of syncing the inflation pressure with the recorded images. A visual representation of a

bulge inflation test is provided in Figure 4-1.

Four bulge inflation tests were performed at Stellenbosch University in South Africa.

Details of the process and test fixture are found in section 5.1 of [77]. The diameter of the

circular bulge test was 200 mm. The PVC-coated polyester tested was Mehler Texnologies

VALMEX® 7318 (the same material in Chapter 2). Four samples of material were cut from

the same roll, with each sample being a 250 mm square. Spray paint was added to the surface

of each specimen, with a random pattern, to increase the surface contrast of the material

for DIC processing. Each test was inflated from zero to three bar, by manually opening a

compressed air valve to the bulge inflation test fixture. This resulted in each test being inflated

at a unique load rate as seen in Figure 4-2. The internal pressure was recorded with a Festo

SPTE-P10R-S4-V-2.5K pressure transmitter.

1 An online repository is available at https://github.com/cjekel/inv_bubble_opt which
includes the source code to perform the inverse analysis, test data, and procedures to
reproduce this work.
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Figure 4-2. Pressure time curves from each bulge inflation test.

Full field bulge inflation tests generated a large amount of data as shown in Table 4-1.

The xy-plane was oriented with the surface of the material prior to inflation, with the x

direction occurring in the warp material direction, while the y direction occurred in the fill

material direction. The material was inflated in the z direction. The number of data points
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Table 4-1. Number of unique (x, y, p) data points from each test and inflation pressures.
Test # of data points
1 1,836,961
2 729,718
3 1,201,509
4 289,312

ranged from test to test. The variation was largely dependent on how finely the DIC data was

processed. Here the largest test generated nearly two million data points, while the smallest

test generated only two hundred thousand data points. Each data point represents a unique

combination of inflation pressure p and initial x, y location. There are three deformations

recorded for each data point, represented as separate ∆x,∆y, and ∆z values.

The DIC techniques were not perfect, as there are missing data points in some of the

test. This happens when correlations is lost between images, and becomes more evident with

larger deflections. Additionally, the severity of missing data varies from test to test. Figure 4-3

shows each x, y data point at the last inflation pressure of each test, where each colored pixel

is a DIC data point. The spacing of the x, y data points vary from test to test as a result of

different DIC processing While Tests 1 and 2 have the highest density of data points, Test

1 doesn’t have any missing data points while test 2 has several small holes on the surface of

the material. The worst of the missing data occurs with test 3, which has large holes on one

quarter of the test. Test 4 only has two small holes on the surface of the data, and also has

the least number of x, y data points on the surface of the material.

4.2.2 Finite Element Model

An implicit non-linear FE model was constructed in ABAQUS which resembled the

physical boundary conditions of the bulge inflation test. Sheplak and Dugundji [78] described

differential equations to solve for the displacement field of bulge inflation tests for isotropic and

orthotropic material models, but [78] was not used as the geometry is simple enough to quickly

construct in any non-linear FE code. The FE model uses an implicit solver, with 201 load

steps between zero and three bar. Each load step uses adaptive time stepping. The adaptive
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Figure 4-3. Plots of the x, y data points of each bulge inflation test. The darker color is
related to having a higher density of data points.

time stepping allows the model to solve a single load-case in one step, or cut back to smaller

increments if needed. Over 900 linear Q4 membrane elements are used to represent the surface

of the material. The linear elements prevent nonphysical out-of-plane force imbalances. The

displacement field at the nodes of the FE solver are exported to be used in further calculations

when the model is run with a given material model.

The displacement field of the FE model needs to be computed several times at various

pressures which correspond with the pressures of the experimental data. Either load steps can

be added to the FE model at the exact experimental pressures, or the displacement field of

the FE model can be interpolated to match the exact experimental pressures. Interpolation
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was chosen since it didn’t involve manually editing the input deck for each test, and resulted

in a fixed number of exported displacement fields. Specifically linear interpolation was used to

evaluate the FE model’s displacement at the nodes for the exact pressures of the experimental

test. Linear interpolation is use to solve the displacement field ∆(x, y, p) by interpolating the

displacement field at the two nearest pressures as

∆(x, y, p)−∆(x, y, p1)

p− p1
=

∆(x, y, p2)−∆(x, y, p1)

p2 − p1
(4-1)

where p2 and p1 represent the nearest pressures of the FE models’ load steps.

Overall, the linear interpolation scheme proved very accurate when interpolating between

the FE model load steps. The linear interpolation accuracy was compared to FE models with

load steps halfway in-between the previous 201 load steps (representing the worse possible

interpolation case). The linear interpolation error was negligible, with the interpolation error

following on the order of single precision (10−8 mm) numerical noise. This level of single

precision was the same level of precision used by the FE model.

Linear isotropic and orthotropic material models were investigated. An isotropic model

with one unknown parameter (stiffness modulus E), and an isotropic model with two unknown

parameters (stiffness modulus E and the shear modulus G) were considered. The orthotropic

model was simplified as a three parameter mode, with parameters for the stiffness moduli (E1

& E2), and the shear modulus (G12). The one parameter isotropic model and the orthotropic

model use a Poisson’s ratio of 0.24 as measured in Chapter 2. Using a constant Poisson’s ratio

simplifies issues with gradient magnitudes, as it is anticipated that gradients of Poisson’s ratio

could be orders of magnitude different than stiffness moduli.

The displacement field of the FE model for an orthotropic material model at 2.0 bar is

shown in Figures 4-4 through 4-6. The maximum ∆z value is about ten times larger than the

∆x or ∆y values. Radial Basis Functions (RBF) are used to interpolate the displacements from

the initial (x, y) node locations at each outputted pressure. The RBFs are exact at the node

locations, and result in a smooth displacement field from the linear four node FE elements.
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The InterpolateSimpleRBF object construct these RBFs to the full displacement field of the FE

analysis. The RBFs were inspired by the SciPy rbf function [79].
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Figure 4-4. Displacement ∆z of FE model at 2.0 bar with orthotropic properties
E1 = 0.8 GPa, E2 = 0.15 GPa, G12 = 0.025 GPa, and ν12 = 0.24.

The radial basis functions are expressed as

y = Aλ (4-2)

where

A =



||x1 − x1||2 ||x2 − x1||2 · · · ||xn − x1||2

||x1 − x2||2 ||x2 − x2||2 · · · ||xn − x2||2
... ... . . . ...

||x1 − xn||2 ||x2 − xn||2 · · · ||xn − xn||2


(4-3)

which follows a simple linear kernel [80]. The RBF parameters λ are solved for a general input

of x, output of y, with n data points. Then n̂ predictions are generated for new x̂ locations as

ŷ = Âλ (4-4)

87



100 75 50 25 0 25 50 75 100
x (mm)

100

75

50

25

0

25

50

75

100

y 
(m

m
)

2.4
1.8
1.2
0.6

0.0
0.6
1.2
1.8
2.4

x 
(m

m
)

Figure 4-5. Displacement ∆x of FE model at 2.0 bar with orthotropic properties
E1 = 0.8 GPa, E2 = 0.15 GPa, G12 = 0.025 GPa, and ν12 = 0.24. Note the
symmetry about x = 0.
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Figure 4-6. Displacement ∆y of FE model at 2.0 bar with orthotropic properties
E1 = 0.8 GPa, E2 = 0.15 GPa, G12 = 0.025 GPa, and ν12 = 0.24. Note the
symmetry about y = 0.
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where

Â =



||x1 − x̂1||2 ||x2 − x̂1||2 · · · ||xn − x̂1||2

||x1 − x̂2||2 ||x2 − x̂2||2 · · · ||xn − x̂2||2
... ... . . . ...

||x1 − x̂n̂||2 ||x2 − x̂n̂||2 · · · ||xn − x̂n̂||2


. (4-5)

For this problem, x refers to the in-plane (x, y) location of the FE model nodes, x̂ refers to

the in-plane (x, y) location of the DIC data, y denotes the displacement from the FE model,

and ŷ represents the experimental displacements. This type of RBF is ideal for interpolating

surfaces of FE models since it is exact at node locations, and results in a smooth interpolation

in-between the FE node locations.

4.2.3 Objective Functions

The objective function which quantifies the discrepancy between the physical bulge

inflation tests and the FE model difference is fundamental for the optimization in the inverse

analysis. The average absolute deviation between the x displacement of the FE model and

inflation test is denoted r∆x(j,β) for the j test and β set of material parameters. These

average absolute deviations are expressed as

r∆x(j,β) =
1

nj

nj∑
i=1

|∆x(xi, yi, pi)t −∆x(xi, yi, pi,β)f | (4-6)

r∆y(j,β) =
1

nj

nj∑
i=1

|∆y(xi, yi, pi)t −∆y(xi, yi, pi,β)f | (4-7)

r∆z(j,β) =
1

nj

nj∑
i=1

|∆z(xi, yi, pi)t −∆z(xi, yi, pi,β)f | (4-8)

where nj is the total number of data points in the j test. A simple discrepancy is then

formulated as the average L1 distance in mm as

e(β) =
1

nt

nt∑
j

r∆x(j,β) + r∆y(j,β) + r∆z(j,β) (4-9)

where nt is the total number of tests. The subscripts t is for the physical inflation test data,

while the subscript f is from the FE model.
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The formulation of e considers the discrepancy in the x, y, and z directions to have an

equal weight. This formulation could be problematic if the discrepancy in one displacement

components dominates the others. In the bulge inflation test data, the ∆z component was

roughly ten times larger than the in-plane (x or y) components. This creates the potential for

the r∆z discrepancies to be larger than the other two directions, because the ∆z values have

the potential to be at least ten times larger than ∆x or ∆y.

A second objective function is proposed as ew to deal with the imbalance between the

maximum in-plane and out-of-plane displacements. The function is just a slight modification of

e, and is expressed as

ew(β) =
1

nt

nt∑
j

r∆x(j,β) + r∆y(j,β) + wr∆z(j,β) (4-10)

where w is a weighting component2 . While there can be many ways to select w, a simple

scheme was chosen as

wz =
1

nt

nt∑
j

max
(
∆x(j)

)
+max

(
∆y(j)

)
2max

(
∆z(j)

) (4-11)

which represents the ratio of the average x and y displacement to the maximum z displacement.

This resulted in w = 0.1 for the bulge inflation tests in consideration.

Two different objective functions are presented to quantify the difference between the

full displacement field of the FE model and DIC tests. One objective function is an average

L1 norm between the x, y, z displacements, while the other function is a relative L1 which

considers the weighted difference between x, y and z displacements. A zero for both functions

would indicate that the FE model’s displacement field exactly matches the experimental data.

This is a similar to the work of Chapter 3 to see how the different objective functions influence

the material parameters, since a perfect match will not be possible.

2 The software available online allows a weight to be specified for each directional
component of the displacement field.
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The optimization requires the objective function e or ew to be computed multiple times.

There are many steps required to automate this using software, and the process is described

in Table 4-2. Several Python functions were created to interface with the the ABAQUS solver

and post processor for this application. The function essentially returns e or ew from inputted

material parameters.

Table 4-2. Process to compute the objective function for given material parameters.
Step Description
1 Write the material model parameters to the ABAQUS input file
2 Run ABAQUS solver on the input file
3 Run ABAQUS post processor to export displacement field of FE model
4 Load the FE displacement field into memory
5 Compute the discrepancy between FE model and DIC data:

i) Linearly interpolate the FE model to match the pressures of the bulge test data
ii) Construct and evaluate RBFs to the FE model displacement field
iii) Compute r∆x, r∆y, and r∆z for each set of test data

6 Compute the final objective function of e or ew

4.2.4 Optimization

The inverse analysis is the process of finding the material parameters of the FE model to

match the bulge inflation test data. The optimization problem can be stated as

minimize: e(β) (4-12)

subject to: βl ≤ βk ≤ βu, k = 1, 2, · · · , np. (4-13)

where β is the vector of material parameters which are restricted to some reasonable lower

and upper bounds. The isotropic parameters are expressed as β = (E) or β = (E,G), and

the simplified orthotropic parameters are expressed as β = (E1, E2, G12). Note that ew is

substituted for e when minimizing the weighted objective function.

The first optimization strategy used a global optimizer with an allocated number of

function evaluations. When the global optimizer exhausted the specified budget, a local

optimizer was used for final convergence to a local optimum. The global optimization strategy

used was Efficient Global Optimization (EGO), which utilized the expected improvement
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from a Gaussian process to minimize the function [81], [82]. A variant of the BFGS [83]–

[86] gradient based optimization was used as the local optimizer [79], [87]. Initially 50

EGO function evaluations (calculations of e) were performed before switching to the BFGS

implementation. A budget of 200 function evaluations for the BFGS appeared to be sufficient

at finding a local optimum.

After several runs of the EGO to BFGS strategy, it became evident that the optimizer

was failing at finding a global optimum. A multi-start optimization strategy was adopted

to better deal with the presence of multiple local minima. The multi-start process ran five

BFGS optimizations from different starting points in the design space [88]. Each of the five

BFGS runs were limited to either 200 function evaluations, or satisfying the convergence

criteria. Converge considered either relative changes in the objective function, absolute changes

in the objective function, or gradient magnitude. This multi-start optimization was able

to consistently find better optimums than the EGO to BFGS strategy, but at the cost of

additional objective functions.

There is the possibility that some combination of material parameters may cause the

FE analysis to not converge. This is problematic when the optimization algorithm requires

a discrepancy for a particular set of parameters that lead to failed convergence. To deal

with this problem, the maximum objective value from the run-time history was passed to the

optimization algorithm when the FE analysis failed to converge. Additionally, a discrepancy

value of 30 mm was passed if the first function evaluation in a given run failed to converge.

This strategy works well with EGO, however it creates a non-differential objective function

which can be problematic for gradient based optimization algorithms. There are also problems

with the use of a L1 based objective function, where gradients can vanish when the residual of

a single points goes to zero.

While there were a number of potential issues using gradient based optimization with

this application, in practice the gradient optimization was able to successfully minimize the

objective function. Looking at the optimization history, the FE analysis would only fail to
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converge during the line search stage of the gradient based optimization algorithm, and not

the finite differences which approximate the gradients. This is less problematic because the

gradients were accurate. Lastly, there were no observed issues with the optimization caused by

the L1 objective function.

4.2.5 Cross Validation

Cross validation is a model selection or validation tool used in various regression problems

to assess the quality of models [89]. Cross validation provides for a nearly unbiased estimate of

the modeling error, and can be used to diagnose overfitting or bias errors. Cross validation can

be used to compare the performance of one material model to another in the context of fitting

material models with an inverse analysis (FEMU). This may be important in practice when the

ideal material model is unknown. In this case, cross validation will be used to quantitatively

compare how the linear isotropic and orthotropic material models represent the behavior of

PVC-coated polyester from these bulge inflation tests.

The processes proposed is similar to leave-one-out cross validation, and is described

in Table 4-3. This cross validation score was computed for both the linear isotropic and

orthotropic material models. The model with the lower cross validation score is assumed to be

a better generalized representation of the material behavior.

Table 4-3. Process to compute leave-one-test-out cross validation error.
Step Description
1 Perform optimization without test j
2 Calculate the discrepancy e or ew on the left-out test j
3 Repeat 1 & 2 for all tests
4 Cross validation score is the average discrepancy e or ew from the left-out tests

4.3 Results

Inverse analyses were performed on the bulge inflation tests to find material parameters

for the linear isotropic and linear orthotropic models. The results show parameters when each

test were fit separately (such that nt = 1). Lastly, the cross validation errors were computed by
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fitting parameters to all combinations of the three tests (nt = 3). The focus of the results is to

demonstrate the effect of the two objective functions.

4.3.1 Linear Isotropic Material Model

Resulting parameters for the single parameter (E) linear isotropic material model are

found in Table 4-4, and results for the two parameter model (E and G) are shown in Table 4-

5. The one parameter model used a Poisson’s ratio of 0.24, while optimization of the two

parameter resulted in a Poisson’s ratio near 0.5. Effectively the shear modulus in the two

parameter model approached the lower limit3 , and the FE model is unable to run when the

Poisson ratio exceed 0.5. Poisson’s ratio appears to significantly effect the stiffness modulus

E, in which the one parameter model resulted in a larger stiffness modulus. For both models

there was little difference between parameters from minimizing e or ew with the first test. The

second and third test produced larger stiffness moduli when minimizing ew, and the degree of

the increase was larger with the one parameter model. In general, it appeared that minimizing

ew resulted in stiffer material parameters. Parameters of the two parameter isotropic model

appears less effected by the weighted objective function than the single objective function.

Table 4-4. One parameter isotropic material results from each inverse analysis. Note ν was
fixed to 0.24.

Minimizing e Minimizing ew
E (GPa) E (GPa)

Test 1 0.279 0.283
Test 2 0.222 0.292
Test 3 0.242 0.282
Test 4 0.218 0.253

The objective values from the various fits are shown in Table 4-6. For both objective

functions, the fourth test resulted in the smallest objective values (or the best fit). The largest

objective values (or the worst fit test) depends upon which objective function was minimized,

3 The lower limit of G is E/3, and Poisson’s ratio is expressed as ν = E/(2G)− 1.

94



Table 4-5. Resulting isotropic material parameters from each inverse analysis. Note ν is
calculated from E and G.

Minimizing e Minimizing ew
E (GPa) G (GPa) ν E (GPa) G (GPa) ν

Test 1 0.279 0.113 0.24 0.283 0.114 0.24
Test 2 0.160 0.054 0.48 0.170 0.057 0.48
Test 3 0.162 0.054 0.50 0.170 0.057 0.49
Test 4 0.154 0.052 0.48 0.155 0.052 0.49

but appears to be either the second or third test. In most cases, the two parameter model

resulted in lower objective function values than the one parameter model.

Table 4-6. Resulting objective values when fitting the linear isotropic models to each bulge
inflation test.

One parameter (E) Two parameter (E,G)
e (mm) ew e (mm) ew

Test 1 1.554 0.497 1.554 0.497
Test 2 1.881 0.795 1.699 0.725
Test 3 1.870 0.588 1.716 0.549
Test 4 1.195 0.457 1.054 0.403

4.3.2 Linear Orthotropic Material Model

The simplified linear orthotropic material parameters resulting from inverse analysis on

the individual tests are shown in Table 4-5. The parameters of the orthotropic model are very

different depending upon which objective function was minimized. There are sizable changes

to both E1 and E2 depending upon whether e or ew was minimized. The most interesting

changes occur in the second and third test, where the choice of objective function reversed

the stiffness directions. Minimizing e resulted in E2 > E1, but minimizing ew resulted in

E1 > E2. Overall, minimizing ew resulted in parameters that were more consistent from test

to test which is expected since the test material was nominally identical. While the stiffness

moduli were very different depending on e or ew, the shear modulus was nearly the same in all

conditions.

The objective values resulting from each parameter set with the linear orthotropic model

are shown in Table 4-8. The table shows the resulting values of ew when e was minimized,
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Table 4-7. Resulting orthotropic material parameters from minimizing tests independently with
each inverse analysis. Note that ν12 was fixed to 0.24.

Minimizing e (GPa) Minimizing ew (GPa)
E1 E2 G12 E1 E2 G12

Test 1 0.343 0.248 0.005 0.303 0.229 0.005
Test 2 0.212 0.241 0.004 0.306 0.230 0.005
Test 3 0.217 0.257 0.004 0.306 0.229 0.005
Test 4 0.239 0.215 0.004 0.280 0.215 0.005

and vice versa. The definition of the worse fit depends upon which objective function was

minimized. In all cases, the value of ew was worse when e was minimized than when ew was

minimized. A similar statement can be made for minimizing ew. If we consider test two, the

objective values when minimizing e changed up to 15% when minimizing ew while E1 changed

over 40% when the objective function was changed.

Table 4-8. Objective values when minimizing e or ew for the linear orthotropic model to each
bulge inflation test.

Minimizing e (GPa) Minimizing ew (GPa)
e (mm) ew e (mm) ew

Test 1 1.550 0.512 1.773 0.490
Test 2 1.660 0.765 1.917 0.710
Test 3 1.702 0.570 1.759 0.527
Test 4 1.033 0.406 1.101 0.380

Comparisons of the differences between the two parameter isotropic material model and

the linear orthotropic material model are shown in Figures 4-7 through 4-10. The chosen

displacement locations occur at the approximate maximums for the linear orthotropic FE

model, as previously shown in Figures 4-4 through 4-6. The ∆x displacements occur at

[x = 56, y = 0], the ∆y displacements occur at [x = 0, y = 63], and the ∆z displacements

occur at [x = 0, y = 0] on the surface of the material. The displacements were plotted with

the inflation pressure. The results of the one parameter isotropic material model have been

omitted, because they were nearly identical to the two parameter isotropic results with the

same objective function.
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Figure 4-7. Resulting displacements from the two parameter isotropic and the linear
orthotropic material models compared with test 1. The ∆x results shown in A)
occur at [x = 56, y = 0]. The ∆y results shown in B) occur at [x = 0, y = 63].
The ∆z results shown in C) occur at [x = 0, y = 0].

The linear orthotropic FE model appears to match the selected test data better than the

isotropic model in all of the cases presented in Figures 4-7 through 4-10. Although it is unclear

whether the choice of e or ew as the objective function resulted in a better fits. It appears

that the linear orthotropic model with ew as the objective function matched the ∆x and ∆y

displacements better, while the e objective function matched the ∆z displacements better.

There are exceptions to both of these cases, where the reverse is seen, depending on which test

is considered.
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Figure 4-8. Resulting displacements from the two parameter isotropic and the linear
orthotropic material models compared with test 2. The ∆x results shown in A)
occur at [x = 56, y = 0]. The ∆y results shown in B) occur at [x = 0, y = 63].
The ∆z results shown in C) occur at [x = 0, y = 0].
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The differences between e and ew for the two parameter isotropic model were very subtle.

However, there is a more noticeable difference between e and ew for the linear orthotropic

material model. This is most evident in the maximum ∆z displacement pressure curves for

all tests. The non-linearity of the ∆z displacements is more prevalent than the ∆x or ∆y

displacements.
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Figure 4-9. Resulting displacements from the two parameter isotropic and the linear
orthotropic material models compared with test 3. The ∆x results shown in A)
occur at [x = 56, y = 0]. The ∆y results shown in B) occur at [x = 0, y = 63].
The ∆z results shown in C) occur at [x = 0, y = 0].
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Figure 4-10. Resulting displacements from the two parameter isotropic and the linear
orthotropic material models compared with test 4. The ∆x results shown in A)
occur at [x = 56, y = 0]. The ∆y results shown in B) occur at [x = 0, y = 63].
The ∆z results shown in C) occur at [x = 0, y = 0].

4.3.3 Cross Validation Material Model Comparison

Inverse analyses were performed to fit isotropic and orthotropic material models to the

bulge inflation tests. Additional inverse analyses were performed such that a leave-one-test-out
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cross validation score was computed for each material model. The resulting discrepancy values

are presented in Table 4-9. The orthotropic material model had the lowest cross validation

error when ew was minimized, but the two parameter isotropic material model had the lowest

cross validation error when e was minimized. The different objective functions appear to prefer

different material models. This implies that the material model which generalizes the bulge

inflation test better depends on the definition of the discrepancy between the test data and FE

model.

Table 4-9. Resulting discrepancy from the inverse analysis and leave-one-test-out cross
validation.

Cross validation error Left out test values
Model e (mm) ew e [1, 2, 3, 4] ew [1, 2, 3, 4]
isotropic (E) 1.995 0.590 [2.47, 2.10, 1.87, 1.54] [0.62, 0.52, 0.59, 0.63]
isotropic (E and G) 1.833 0.554 [2.37, 1.85, 1.72, 1.40] [0.57, 0.50, 0.56, 0.60]
orthotropic 1.856 0.533 [2.47, 1.88, 1.73, 1.35] [0.49, 0.72, 0.53, 0.40]

The two parameter isotropic material model parameters from the full inverse analysis and

the cross validation runs are presented in Table 4-10. When e was minimized, the stiffness

modulus varied from 0.155 to 0.170 GPa. However, when ew was minimized the stiffness

modulus varied from 0.170 to 0.193 GPa. and the shear modulus varied from 0.057 to

0.070 GPa. Overall, ew resulted in more consistent and stiffer moduli.

Table 4-10. Resulting two parameter isotropic material parameters from each inverse analysis.
Minimizing e (GPa) Minimizing ew (GPa)
E G E G

Leaving test 1 out 0.155 0.052 0.170 0.057
Leaving test 2 out 0.167 0.056 0.170 0.057
Leaving test 3 out 0.164 0.055 0.170 0.056
Leaving test 4 out 0.170 0.057 0.193 0.066

The orthotropic material parameters from the cross validation study are shown in Table 4-

11. There is a significant difference between the parameter variance depending upon which

objective function was used. For instance, E1 varied from 0.224 to 0.280 GPa when e was
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minimized. However, when ew was minimized E1 varied from 0.303 to 0.305 GPa. A similar

trend occurs for E2 and G12, where minimizing ew resulted in more consistent parameters.

Table 4-11. Resulting orthotropic material parameters from each inverse analysis.
Minimizing e (GPa) Minimizing ew (GPa)
E1 E2 G12 E1 E2 G12

Leaving test 1 out 0.224 0.235 0.003 0.303 0.229 0.005
Leaving test 2 out 0.297 0.231 0.004 0.304 0.229 0.005
Leaving test 3 out 0.284 0.224 0.004 0.304 0.229 0.005
Leaving test 4 out 0.280 0.244 0.003 0.305 0.229 0.005

4.4 Discussion

The most striking result was the effect of the two objective functions on selecting

parameters for the linear orthotropic material model. When e was minimized the linear

orthotropic parameters varied significantly from test to test, with some tests resulting in

E2 > E1 and others E1 > E2. This was not the case when ew was minimized, in which the

parameters from test to test were fairly consistent with E1 > E2. The difference between the

two objective functions was that e considered the discrepancies in the x, y and z directions

to be of equal weight, while ew considered the z discrepancies to be one tenth the weight.

This weighting factor corresponds to an imbalance between the test maximum z displacement

being about ten times larger than the maximum x or y displacements. It’s important to clarify

that both e and ew would approach zero if it was possible for a perfect fit, however resulting

material parameters occur with the inability to perfectly fit the data. In these circumstances

it appears that one may need to careful consider how to eventuate the discrepancy of the

displacement field, especially under similar imbalanced displacement data.

Tests two and three are of particular interest with the linear orthotropic model, because

these tests resulted in E2 > E1 when e was minimized. It could be reasonable to assume

that the test directions were incorrect by a factor of 90◦, and that this mistake in the x and

y directions resulted in the set of parameters. Additional inverse analyses were performed on

these tests, where the test data was rotated by factors of 45◦ and 90◦. What is interesting is

that when e was minimized the resulting parameters resulted in E2 > E1 regardless of the
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rotation, and there was little change to the parameters. However, when ew was minimized

both E2 and E1 would change significantly based on the rotation. This hints that giving

more weight to the x and y displacements, like in ew, would be better if an inverse analyses

was required to identify orthotropic parameters without knowing the primary and secondary

material directions.

The different objective functions had an interesting effect on using leave-one-test-out

cross validation for material model selection. When e was minimized, the cross validation

error favored the two parameter isotropic material model. Though when ew was minimized,

the cross validation error favored the orthotropic material model by a much larger margin.

This reemphasizes the importance of selecting an appropriate objective function, as the choice

of objective function not only effects the resulting parameters, but also effects the perceived

generalization error of the model.

4.5 Conclusion

An inverse analysis was described to find material parameters by matching the full

displacement field from bulge inflation tests. Optimization was used to find material

parameters in a FE model that best matched the experimental displacement field from

tests on PVC-coated polyester. Material parameters were determined for a linear isotropic and

simplified linear orthotropic material models. Two different objective functions were considered

to describe the discrepancy between the experimental data and numerical model. The first

objective function considered equal weight between the displacement components, while the

other function gave more weight to the x and y displacements. The weighting scheme was

chosen to compensate for the fact that the majority of the deflections within the bulge inflation

test occur out-of-plane. Resulting material parameters for the linear orthotropic material model

were very different depending on which objective function was minimized. Thus the choice of

objective function being considered is very important when performing such an optimization on

the full field data.
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Cross validation was performed to determine whether the isotropic or orthotropic material

model was a better representation of the material behavior. There was little difference in

the cross validation error according to the equally weighted objective function, however the

weighted objective function heavily favored the orthotropic material model. This indicates that

the choice of objective function was not only important in material parameter selection, but

can also impact material model selection.
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CHAPTER 5
SUMMARY

This collection of work has demonstrated that the choice of objective function could

have an important impact when identifying material parameters, to a degree that has been

overlooked in much of the literature. The objective function was abstracted differently

throughout this work, but can be thought of as 1) problem definition, 2) error measure, and 3)

normalization of data. The second chapter considered problem definition, and demonstrated

that different material parameters occur when matching an imperfect material model using

either the stress-strain or load-displacement responses. The third chapter considered different

error measures directly, and demonstrated that different mathematical norms will result in

different material parameters provided imperfect matching. The fourth chapter worked with the

normalization of experimental data, and demonstrated how different normalization schemes of

displacement components result in different material parameters. The lessons learned in this

work recommend engineers to explore more than one possible objective function, as the results

related to the different objective functions will provide more insight to the task. Researchers

who plan to present material parameters from a study should pay careful attention to how the

choice of objective function influence their results.

Non-linear orthotropic material parameters where characterized for PVC-coated polyester.

Uniaxial tests where performed in the material’s primary, secondary, and 45◦ bias directions.

Parameters were determined by either matching a FE model to the experimental load-

displacement results, or by matching the stress-strain responses. These two approaches

can be thought of as two different objective functions. This resulted in either the load-

displacement behavior or the stress-strain behavior being characterized more accurately by the

FE model, because the material model couldn’t perfectly describe the complex behavior of

the material. The results were most pronounced on the 45◦ bias test, for which there are very

clear distinctions between the load-displacement and stress-strain sets of material parameters.
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The choice of matching the load-displacement or stress-strain responses resulted in different

non-linear orthotropic material parameters.

Parameters were determined for a kinematic hardening model using several different

similarity measures. Some of the methods, like PCM, originated from the material parameter

identification community. Other methods, like the Discrete Fréchet Distance and Dynamic

Time Warping had a substantial history in the machine learning community. All of these

methods are convenient for an engineer to use as the objective function when calibrating

materials parameters when working with tension-compression-tension tests. The fundamental

difference between methods is analogous to different mathematical norms. Using these

different similarity measures resulted in different sets of kinematic hardening parameters.

Isotropic and orthotropic material parameters were determined from bulge inflation tests

on PVC-coated polyester. Experiments captured full-field displacements using DIC. Parameters

where characterized using an inverse analysis that matched a FE model displacement field to

the experimental data. The bulge inflation tests had a numerical issue, in which the out-of-

plane displacements were an order of magnitude larger than the in-plane displacements. Two

objective functions were formulated with different normalization schemes of the displacements.

The two normalization schemes resulted in significantly different material parameters. A

normalization scheme which considered the displacement residuals to be of equal weight

resulted in the best and most consistent orthotropic parameters.
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APPENDIX A
LACK OF FIT TESTS TO FIND ADEQUATE MATERIAL MODELS

A lack-of-fit test can be used to determine whether a finite element (FE) material model,

or experimental results should be the focus to improve overall model accuracy. The lack-of-fit

test compares the unbiased estimate of variance to the estimated variance from noise within

data. GSJ and Hart methods from literature are provided to estimate the noise within data,

and a generalized lack-of-fit test is described. The variance estimators are compared and

convergence is demonstrated on a simple regression problem. The lack-of-fit test is then

applied to a material calibration problem using the FE method. The lack-of-fit test indicates

that the shear component of a non-linear orthotropic material models could be improved,

despite already being considered an excellent fit. Additionally the lack-of-fit test is used with

a load-dependent Poisson’s ratio to demonstrate that the variance in the experimental data

should be reduced in order to improve the model.∗

A.1 Introduction

It has become common practice to calibrate material model parameters on experimental

data for finite element (FE) analyses. The overall accuracy of the FE model is dependent on

the model’s ability to replicate the material behavior. Thus it is important to select the best

material parameters to accurately describe the material behavior. In general parameter values

are selected such that the FE model reproduces some experimental results. The accuracy

of the FE model can be improved by either improving the model (e.g., finding a better

material model), or by improving the experimental data (e.g., reducing the uncertainty in the

experimental data). Potentially a lack-of-fit test may be used to decide which aspect (model or

data) should be the focus for improvement.

∗ A previous version of this chapter was published in AIAA Non-Deterministic Approaches
Conference [90].
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In this context a lack-of-fit investigation looks at whether the primary contribution of

error is due to the inherent variance in experimental data, or the inability of the material model

to replicate the experimental data. Mismatch between the FE model and experimental data

is due to both the material model not being accurate enough, and noise in the experimental

data. However noise doesn’t just appear in experimental data, and sometimes a poor model

may generate aditional noise as demonstrated by Park et al. [91]. Noise leads to discrepancies

between the true material model and the captured experimental data. Additionally noise in

data may yield calibrated material parameters that are not accurate. A model passing the

lack-of-fit test indicates that the noise in the experimental data is limiting the accuracy of the

calibrated parameters. Alternatively a failed lack-of-fit test indicates that the material model is

unable to replicate the response captured in the experimental data.

Analysis of variance (ANOVA) is a widely used set of statistical models aimed at

comparing variation between data. ANOVA models include the partitioning of the sum of

squares, lack-of-fit tests, likelihood ratio test, and the F-test. Traditionally these methods

require the data to have true replicates, though practically obtaining these replicates is difficult

for material tests. In terms of material response modeling, true replicates would require

multiple stress values for each strain value. However material test data is typically collected

in a way such that there is a dependent response as a function of some other independent

variable (e.g., variation of stress values among strain values for repeated uniaxial tests).

The difference between true replicates and a typical material response can be seen in

figure A-1, which shows an example of true replicates in A) and a more typical experimental

response in B). There are multiple f(x) values for a given x when looking at a response

containing true replicates. True replicates of experimental responses can be difficult to capture.

An experiment is generally performed to captured a response f(x) which varies with respect

to x. The experiment itself is repeated, however the captured responses may not contain

replicates for the exact same independent variable x. There are classical statistical methods

that can be applied when true replicates exist [92].
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Figure A-1. True replicates shown in A) where there are multiple f(x) for a unique x. A more
typical response is shown in B) of collected experimental data where f(x) appears
to demonstrate inherent variation amid different x values.

This paper goes on to describe the lack-of-fit test which is based on comparing a ratio of

variances. First the unbiased variance is calculated which represents the variance between the

model and data. Then the variance from the noise (or scatter) within the data is estimated.

Two different variance estimators are used from literature. First the popular GSJ variance

estimator is described [93]. Then a generalized variance estimator proposed by Hart is

described [94]. These variance estimators are used to estimate the variance due to the noise

(or scatter) within experimental data. A classical lack-of-fit test is then described from the

literature by comparing these variances.

The GSJ and Hart variance estimators are compared against each other. Additionally

the convergence behavior of the variance estimators and the lack-of-fit tests is demonstrated

on a simple linear regression example. The lack-of-fit tests are then used on a material

parameter identification problem. An example shows a case where it is suggested that the

shear component of a non-linear orthotropic material model be improved in order to improve

the accuracy of the FE model. Another example uses the lack-of-fit test to show that the

variation within experimental data be reduced in order to improve a load-dependent Poisson’s

ratio model.
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A.2 Statistical Methods

The variances investigated either represent the variance from the error of the fit, or the

variance from noise (or scatter) within the data. Mathematical definitions of the variances are

proposed from literature. The unbiased variance represents the variance of the error between

the model and data. The GSJ and Hart methods are presented to approximate the inherent

variance from noise within the data. Popular alternative variance estimates are also mentioned,

though this work emphasizes the GSJ and Hart methods. Lastly the F -statistic is proposed for

a generalized lack-of-fit test.

A.2.1 Unbiased Variance

The residual e is described as

e = f(x)− f̂(x) (A-1)

where the predictive model is represented by f̂(x), and the data is represented by f(x). The

unbiased estimate of the variance is

σ̂2 =
e · eT

n− nβ

(A-2)

for a linear regression problem, with n number of data points, and nβ number of parameters

in the predictive model [92].1 The unbiased estimate of the variance assumes that the model

accurately describes the data. If this unbiased variance is significantly larger than the variance

due to noise in the data, then the model is not accurate.

The measure of the lack-of-fit can be described by the difference between the unbiased

variance and the variance from noise in data. It is common to use the unbiased variance as a

goodness-of-fit metric for a predictive model. It can be noted that e · eT represents the sum

1 Myers et al. in Ref. [92] refers to σ̂2 as the unbiased estimator. It was chosen to refer to
this term as the unbiased variance in order to avoid confusion from the later described variance
estimators.
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of the square of the residuals, another metric that is often used to represent goodness-of-fit for

regression problems.

A.2.2 GSJ Variance Estimator

Gasser et al. proposed a variance estimator based on local linear fitting between three

consecutive points [93]. This method for estimating variance is commonly referred to as the

GSJ method and was originally intended for non-linear regression. However, the GSJ method

isn’t just limited to applications in non-linear regression. For instance the GSJ method can be

used to approximate the variance due to noise (or scatter) within data.

Let’s considered a data set f(x), where x is ordered as x1 < x2 < · · · < xn. A vector of

pseudo residuals ẽ can be constructed by considering every three consecutive data points. A

single pseudo residual ẽi is described by

ẽi =
xi+1 − xi

xi+1 − xi−1

f(xi−1) +
xi − xi−1

xi+1 − xi−1

f(xi+1)− f(xi) (A-3)

= aif(xi−1) + bif(xi+1)− f(xi) (A-4)

for i = 2, 3, · · · , n − 1. The variance σ̂2
e of the estimated noise within data is obtained by

taking

σ̂2
e =

1

n− 2

n−1∑
i=2

e2i
a2i + b2i + 1

(A-5)

where n represents the number of data points. It’s worthwhile to note that σ̂2
e can be

calculated for all one dimensional data containing at least three points. The GSJ variance

estimator becomes more accurate as the number of data points increases, and this convergence

behavior is demonstrated in Section III.

A.2.3 Hart Variance Estimator

Hart proposed a generalized variance estimator useful for lack-of-fit tests [94]. The

estimator considers the noise within data by taking differences between every two consecutive

residuals. The derivation is meant for linear regression problems, however it can be extended

to non-linear regression problems by using the linearized regression matrix described by Coppe
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et al. [95]. An example regression matrix X for fitting a quadratic polynomial to data is

represented bellow.

X =



1 x1 x2
1

1 x2 x2
2

... ...

1 xn x2
n


(A-6)

The data should be ordered consecutively as x1 < x2 · · · < xn. Thus the first residual

is defined as the difference between the data and predictive model at the first location

e1 = f(x1)−f̂(x1), the second residual e2 = f(x2)−f̂(x2), and so forth as en = f(xn)−f̂(xn).

The estimate of the variance from the noise in the data σ̃2 is described as

σ̃2 =
eT ·H · e

an
(A-7)

=
1

an

n∑
i=2

(
ei − ei−1

)2 (A-8)

where an = 2(n− 1)− trace(HX(XTX)−1XT) and H is the n× n tridiagonal matrix.

H =



1 −1 0 0 0 · · · 0 0 0

−1 2 −1 0 0 · · · 0 0 0

0 −1 2 −1 0 · · · 0 0 0

... ... ... ... ... . . . ... ... ...

0 0 0 0 0 · · · −1 2 −1

0 0 0 0 0 · · · 0 −1 1


(A-9)

Hart uses this generalized variance estimate to perform non-parametric lack-of-fit tests, stating

that it is more conservative than GSJ. However unlike GSJ, Hart’s method is dependent

upon the chosen regression model. The convergence behavior of the Hart variance estimator

(with respect to the accuracy of the regression model and the number of data points) is

demonstrated in Section III.
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A.2.4 Alternative Variance Estimators

Various other methods have been used to estimate the variance from noise in data.

Notable simple methods include estimating the noise by the variation between consecutive x

points as σ̂2
x, or by the variation between consecutive f(x) points as σ̂2

f .

σ̂2
x =

1

2(n− 1)

n∑
i=2

(
xi − xi−1

)2 (A-10)

σ̂2
f =

1

2(n− 1)

n∑
i=2

(
f(xi)− f(xi−1)

)2 (A-11)

However Gasser et al. demonstrated that the GSJ method was more accurate than σ̂2
f [93].

Additionally σ̂2
x will not provide useful insight when x has been systematically spaced. It is

worthwhile to note that Altman and Paulson provided an alternative derivation for the GSJ

method when the spacing between x points is consistent [96]. Hart stated in Ref. [94] that

his generalized method is closely related to the cubic spline method created by Munson and

Jernigan [97]. Expansions of the GSJ method could be created using higher order (quadratic,

cubic) interpolations between consecutive data points.

A.2.5 F-Test and Lack-of-Fit

The F-test represents a statistical test for investigating lack-of-fit. Essentially F represents

our test statistic, which will be used to determine whether or not a model is adequate with the

provided data. A classical lack-of-fit test categorizes the error resulting from either lack-of-fit

or pure error [92]. Lack-of-fit error refers to the error between the model and true function.

While pure error represents the inherent error from the noise (or scatter) within the data.

Using these principles, the F -statistic can be generalized as the the ratio of variances

F ≈ σ̂2

σ̂2
e

≈ σ̂2

σ̃2
(A-12)

where the unbiased estimate of variance is compared to the estimated variance of noise within

the data.
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The F -statistic follows the F(X;n − nβ, n − 1) distribution where n represents the

number of data points and nβ represents the number of model parameters. The null hypothesis

H0 is constructed assuming that there is no lack-of-fit, and the model is adequate given the

scatter in the data. For this hypothesis, the P-value is obtained by taking the complementary

cumulative distribution of F(F ;n− nβ, n− 1). The null hypothesis is accepted when

H0 : P-value > 0.05 (A-13)

and the P-value is greater than some level of confidence, which conventionally is 0.05 for

significance.

A rejected null hypotheses implies that the model poorly describes the data. The null

hypothesis is rejected for large F values, where the majority of variance is characterized from

the inability of the model to fit the data. Alternatively all of the modeling variance could be

equal to the variance from noise in the data, or F = 1. When F = 1 the model is accepted,

because it is assumed that the only error in the model originates from the inherent noise in

the data. It is possible for the F -statistic to be less than 1, because the estimated variance

from noise may be greater than the unbiased variance (particularly when there is error in the

estimated variance). The models are usually accepted for a small test statistic where F < 1

because the error is less than the approximated scatter within the data.

A.3 Demonstrated Convergence of Statistical Methods

A simple example was created to demonstrate the convergence behavior of the variance

estimators and lack-of-fit test. Data is sampled from the equation

f(x) = −1.4 + 1.5x+ 190.3x2 (A-14)

with the addition of random Gaussian noise that follows the normal distribution of N(µ =

0, σ2 = 25). The number of data points was increased to demonstrate the convergence

behavior. The data points xi are selected at random from 0 ≤ xi ≤ 1. The least squares

method is used to fit polynomials with degrees ranging from zero to five to the data. With the
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Hart method, it is also important to understand the effect of the chosen regression model on

the estimated variance. Polynomials with degrees three to five were chosen to provide insight

on overfitting the true function. A k degree polynomial is expressed as

f̂(x) =
k∑

j=0

βjx
j (A-15)

where the βj parameters are determined from the least squares fit. Examples of polynomial fits

for 10, 20, and 200 data points can be seen in figure A-2.
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Figure A-2. Constant, linear, and quadratic polynomial fits for 10, 20, and 200 data points.

A.3.1 Variance Estimator Convergence

The estimated variance from noise for the GSJ and Hart methods are compared to the

variance of the added noise randomly drawn from the normal distribution. It is the intention of

this comparison to demonstrate the accuracy of the estimated variance from noise for a simple

data set. The estimated variances are presented in table A-1. For a small number of points

the GSJ method does a poor job at estimating the variance of the noise in the data. However

as the number of data points increases, the accuracy of the GSJ method improves. The same

trend is observed with the Hart method, in which the number of data points improved the

accuracy of the estimated variance of noise. The Hart method was able to estimate the noise

with reasonable accuracy when using higher degree polynomials and only 10 data points. For

this example the Hart method using the 4th degree polynomial produced the most accurate

estimation of the variance from noise in the signal. Lastly it is worthwhile to note that even
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with 20,000 data points, the estimated variance from all methods converged to 25.3 despite

having a true variance of 25.0. This discrepancy looks worse as a variance than as a standard

deviation because of the squared term. If standard deviations were considered, the estimated

standard deviation would be 5.03 and the true standard deviation would be 5.0.

Table A-1. Demonstrated convergence of the GSJ and Hart variance from
noise estimation methods for the quadratic example with 10
through 20,000 data points.

Variance metric n = 10 n = 20 n = 200 n = 2000 n = 20, 000

GSJ σ̂2
e 271.4 177.5 27.1 23.8 25.3

0 degree Hart σ̃2 260.1 171.4 27.0 23.8 25.3
1 degree Hart σ̃2 37.6 60.4 25.6 23.8 25.3
2 degree Hart σ̃2 30.4 27.1 25.3 23.9 25.3
3 degree Hart σ̃2 25.7 27.2 25.3 23.9 25.3
4 degree Hart σ̃2 23.2 24.8 25.3 23.9 25.3
5 degree Hart σ̃2 25.9 25.6 25.3 23.9 25.3
True σ2 from noise* 23.58 24.1 24.7 24.7 25.0
* True noise refers to the variance calculated from the samples pulled from
the normal distribution. The normal distribution used had a σ2 = 25.0,
however the actual variance of these samples will differ when n is small.

It was possible the random spacing of the x data points influenced the performance of

the GSJ variance. To demonstrate this affect, the GSJ variance was recalculated for linearly

spaced x data points chosen from 0 ≤ xi ≤ 1. The noise from the normal distribution was

preserved from the previous example. The results of the linearly spaced x values on the GSJ

variance is presented in table A-2. The GSJ method estimated the variance from noise more

accurately when using linearly spaced data points as opposed to the randomly selected data

points. This likely occurs because the linear approximation between three far points is much

worse than three close data points. Despite improving, the GSJ variance estimate did a poor

job at estimating the noise with few data points.

A.3.2 Lack-of-Fit Convergence

The F -statistic and P-values were calculated for the previous example of fitting various

degree polynomials to quadratic data with normally distributed noise. The unbiased estimate
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Table A-2. Demonstrated convergence of the GSJ when data points are
linearly spaced from 0 ≤ xi ≤ 1.

Variance metric n = 10 n = 20 n = 200 n = 2000 n = 20, 000

GSJ σ̂2
e 255.6 93.8 26.0 24.6 25.2

True σ2 from noise* 23.58 24.1 24.7 24.7 25.0
* True noise refers to the variance calculated from the samples pulled from
the normal distribution. The normal distribution used had a σ2 = 25.0,
however the actual variance of these samples will differ when n is small.

of variance σ̂2 for the model fits are seen in table A-3. The F -statistic and P-value were

calculated for each degree polynomial fit. The results using the GSJ method are shown in

table A-4 and the Hart method in table A-5. In general the GSJ and Hart methods are in

agreement with accepting and rejecting models based on the lack-of-fit test. Additionally

the GSJ and Hart methods converge to the same F -statistic values for this example when

n = 2000 data points are used. The only disagreement between the GSJ and Hart methods

occur for the 1 degree polynomial fit when n = 20, in which the GSJ method accepts the

model while the Hart method rejects the model. It is noted that the GSJ method in this case is

on the boundary of the 95% confidence hypothesis test, and that the model would have been

rejected if 99% confidence hypothesis test was used.

Table A-3. Unbiased estimate of variance σ̂2 for various degree polynomial
fits to the true quadratic function which included normally
distributed noise. The bottom row of the table shows the
variance of the normally distributed noise in the data.

Degree n = 10 n = 20 n = 200 n = 2000 n = 20, 000

0 2008 3307 3571 3321 3291
1 85.9 384 208 237 227
2 27.3 25.5 24.9 24.7 25.0
3 21.3 26.2 25.0 24.7 25.0
4 21.8 22.7 25.1 24.7 25.0
5 26.3 22.4 24.7 24.7 25.0
True σ2 from noise* 23.58 24.1 24.7 24.7 25.0
* True noise refers to the variance calculated from the samples pulled from
the normal distribution. The normal distribution used had a σ2 = 25.0,
however the actual variance of these samples will differ when n is small.
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Table A-4. GSJ estimated variance used to calculate the F -statistic and P-value for the example quadratic with 10 through 20,000
data points. P-values greater than 0.05 indicated that the data is adequately described by the degree of polynomial fit.

Degree n = 10 n = 20 n = 200 n = 2000 n = 20, 000

0 F = 7.40,P = 0.03 F = 18.6,P = 0.00 F = 132,P = 0.00 F = 139,P = 0.00 F = 130,P = 0.00
1 F = 0.30,P = 0.94 F = 2.16,P = 0.05 F = 7.67,P = 0.00 F = 9.94,P = 0.00 F = 8.96,P = 0.00
2 F = 0.10,P = 1.00 F = 0.14,P = 1.00 F = 0.92,P = 0.73 F = 1.04,P = 0.22 F = 0.99,P = 0.79
3 F = 0.08,P = 1.00 F = 0.14,P = 1.00 F = 0.92,P = 0.72 F = 1.04,P = 0.22 F = 0.99,P = 0.79
4 F = 0.08,P = 1.00 F = 0.13,P = 1.00 F = 0.93,P = 0.71 F = 1.04,P = 0.21 F = 0.99,P = 0.79
5 F = 0.10,P = 0.98 F = 0.13,P = 1.00 F = 0.91,P = 0.74 F = 1.04,P = 0.21 F = 0.99,P = 0.79

Table A-5. Hart estimated variance used to calculate the F -statistic and P-value for the example quadratic with 10 through 20,000
data points. P-values greater than 0.05 indicated that the data is adequately described by the degree of polynomial fit.

Degree n = 10 n = 20 n = 200 n = 2000 n = 20, 000

0 F = 7.70,P = 0.02 F = 19.3,P = 0.00 F = 132,P = 0.00 F = 139,P = 0.00 F = 130,P = 0.00
1 F = 2.27,P = 0.12 F = 6.37,P = 0.00 F = 8.12,P = 0.00 F = 9.94,P = 0.00 F = 8.96,P = 0.00
2 F = 0.90,P = 0.55 F = 0.94,P = 0.55 F = 0.98,P = 0.55 F = 1.04,P = 0.22 F = 0.99,P = 0.79
3 F = 0.83,P = 0.58 F = 0.96,P = 0.53 F = 0.99,P = 0.54 F = 1.04,P = 0.22 F = 0.99,P = 0.79
4 F = 0.94,P = 0.50 F = 0.92,P = 0.56 F = 0.99,P = 0.52 F = 1.04,P = 0.22 F = 0.99,P = 0.79
5 F = 1.02,P = 0.44 F = 0.87,P = 0.60 F = 0.98,P = 0.56 F = 1.04,P = 0.21 F = 0.99,P = 0.79
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It is important to remember that both the GSJ and Hart methods are estimations of the

variance from the scatter in the data. When there is a limited number of data points, the

methods may yield different results. However the example problem demonstrated that both the

GSJ and Hart methods converge to the same values given a large number of data.

The F -statistic is useful in determining whether a model adequately describes data. In the

quadratic example with added normally distributed noise, the F -statistic demonstrated that

constant (degree 0) and linear (degree 1) models were inadequate to represent the quadratic

data. The models were inadequate because a significant portion of the unbiased variance σ̂2

originated from the model’s inability to fit the data and not from the inherent variance (from

noise) in the data. It is worthwhile to note that the F -statistic does not provide insight about

over fitting, since the polynomials with degrees 3-5 were always accepted with the F -statistic.

A.4 Application to Material Parameter Identification

The F -statistic is applied to a material calibration example of Jekel et al., in which a

non-linear orthotropic material model is fit to uniaxial test data using non-linear regression

[24]. There are three distinctive FE models, one for the warp, fill, and 45◦ bias uniaxial tests.

Each FE model is compared to the corresponding uniaxial experimental data. The intention

is to apply the F -statistic to investigate the lack-of-fit for a practical material calibration

problem. In terms of material calibration, the F -statistic and lack-of-fit tests represent a useful

tool on demonstrating whether the model would improve the most from improvements to the

FE model, or from reducing the variance in the experimental data.

Both the GSJ and Hart methods were used to investigate the lack-of-fit. It’s worthwhile

to note that it is significantly simpler to apply the GSJ method, as the Hart method requires a

linearized regression matrix. Since this is a non-linear regression problem, a linearized regression

matrix was approximated using finite differences following Coppe et al [95].

The lack-of-fit results are presented in table A-6, where the F -statistic and P-values were

calculated for the non-linear orthotropic model on two different PVC-coated polyesters. The

Hart and GSJ methods were in agreement for all cases, where only the CF0700T 45◦ bias
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model was deemed inadequate with the provided data. It is interesting to note that this

particular model failed the lack-of-fit test, despite being a relatively good fit to the data. For

all of the other 5 examples, the lack-of-fit tests demonstrated that the models adequately

described the test data. An accepted lack-of-fit test (P-value > 0.05) would indicate that the

variance within the experimental data should be reduced in order to improve the overall FE

model. Alternatively a rejected lack-of-fit test (P-value ≤ 0.05) would suggest improvements

like using a material model that more accurately represented the experimental response.

Table A-6. F -statistics and P-values (model is accepted when P > 0.05) for the non-linear
orthotropic material model on two types of PVC-coated polyester.

Material Method Warp Fill 45◦ bias

CF0700T GSJ F = 0.40,P = 1.00 F = 0.85,P = 0.73 F = 1.59,P = 0.00
CF0700T Hart F = 1.35,P = 0.14 F = 1.20,P = 0.25 F = 2.79,P = 0.00
VALMEX® 7318 GSJ F = 0.46,P = 1.00 F = 0.98,P = 0.53 F = 0.84,P = 0.79
VALMEX® 7318 Hart F = 1.28,P = 0.18 F = 1.04,P = 0.45 F = 0.86,P = 0.77

The fit of the CF0700T 45◦ bias test data and FE model is shown in A) of figure A-3,

while B) shows the VALMEX® 7318 45◦ bias fit. In both cases the FE model appears to

capture the experimental response well. One way to qualitatively investigate lack-of-fit is

to plot the residuals e of the model. If a model has lack-of-fit, there will be a systematic

departure in the residual plot. Alternatively if a model has no lack-of-fit, the residual plot will

appear as random noise. To visualize this description, the residual plots from the 45◦ bias

test direction is seen in figure A-4 for the two types of PVC-coated polyester. The CF0700T

45◦ bias test is shown in A) where the systematic departure indicates that lack-of-fit is present.

The VALMEX® 7318 45◦ bias test is shown in B), where the inherent randomness (especially

at high displacements) indicates inherent variability in the experimental data. Patterns in the

residual plot can be an indication of a case where it is best to improve the model. While a zero

centered residual plot with random scatter could indicate lack-of-fit.

The CF0700T 45◦ bias test was described as an exceptionally good fit because the

average residual was small relative to the data values. The residuals were on the order of
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Figure A-3. The experimental data and final FE model results. The accuracy of the FE model
depends on the material model and the uncertainty in the experimental data.

20 N, while the data had a maximum value around 1200 N. This demonstrates an example

where the lack-of-fit test indicates that an existing model could be improved, despite being

already considered a good fit. In this case a second order polynomial was used for the shear

moduli and potentially a higher order polynomial would allow the model to better match the

experimental response.
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Figure A-4. Residual plots of 45◦ bias uniaxial test for two different PVC-coated polyesters. In
A) the lack-of-fit test was failed, while B) passed the lack-of-fit test.
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The Poisson’s ratio for the CF0700T PVC-coated polyester is now considered as another

material parameter calibration example [24]. A linear trend was fitted to the Poisson’s ratio

that varied with respect to the load, as seen in figure A-5. A lack-of-fit test (F ≈ 0.9)

indicates that the linear trend is an accepted model. The lack-of-fit test indicated that the

major source of the variance was from the experimental data. In this case the only way to

improve a trend to the linear Poisson’s ratio model would be to reduce the variance in the

experimental data. Attempting to use a better model for the trend, such as quadratic or cubic

polynomials, will not gain much improvement in the overall accuracy. For instance the unbiased

variance for the linear trend is σ̂2 = 5.7× 10−4, quadratic trend is σ̂2 = 5.7× 10−4, and for a

cubic trend is σ̂2 = 5.6× 10−4.
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Figure A-5. Poisson’s ratio as a function of the applied load for CF0700T PVC-coated
polyester, with a linear trend fitted to the data.

It is worthwhile to consider that for these examples, conclusions as to whether to improve

the model or data could have been drawn without a lack-of-fit test using visual methods.

Though the lack-of-fit test serves as a basis to aid such decisions. Additonally it may be

difficult to visualize high dimensional data, and thus it is anticipated that extensions of the

lack-of-fit in high dimmensions may be useful when dealing with data that is difficult to

visualize. Unfortunately the GSJ and Hart methods as proposed will require modification to be
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extended to higher dimensions. If true replicates exist, a classical lack-of-fit test can be applied

following Myers et al. regardless of the dimension of data [92].

A.5 Conclusion

A generalized lack-of-fit test was described that could be applied to experimental data

when calibrating a material model. The F -statistic represented a comparison of the unbiased

estimate of variance to the estimated noise within the data. Two methods, GSJ and Hart, were

used to approximate the variance from the noise within experimental data for cases without

true replicates. The GSJ method can be directly applied to data, while the Hart method

requires a linear regression model. This gives the GSJ an advantage in simplicity. Though it

was shown that the Hart method can be more accurate with fewer data points, provided that

the regression model used closely resembles the true function. The lack-of-fit test can be used

to indicate if the model, or the data has the largest potential for improvement.

The lack-of-fit tests were applied to a material calibration problem, in which a non-

linear orthotropic model was used to describe PVC-coated polyester. It is worthwhile to note

that the existing model was previously considered an excellent fit. Despite this, the lack-

of-fit test indicated that one of the experimental responses was inadequately described by

the model. This lack-of-fit could be visualized as a systematic departure in a residual plot.

An interesting take away is that even if a material model is of exceptional fit, the material

calibration parameters may fail the lack-of-fit test. In this case it would be recommenced to

consider improving the model. Alternatively with the Poisson’s ratio example, the lack-of-fit

test indicates that the uncertainty in the experimental data should be reduced in order to

predict a better trend.
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APPENDIX B
ALGORITHM TO CALCULATE AREA BETWEEN TWO CURVES

The area of any simple (non self intersecting) quadrilateral can be expressed by Gauss’s

area formula (also known as the shoelace formula). Gauss’s area formula for a simple

quadrilateral is

A =
1

2

∣∣x1y2 + x2y3 + x3y4 + x4y1 − x2y1 − x3y2 − x4y3 − x1y4
∣∣ (B-1)

where A is the area and (xi, yi) represents the vertices of the quadrilateral. It is worthwhile to

note that any complex quadrilateral can become a simple quadrilateral by rearranging the order

of the vertices.

A Complex B Concave C Convex

Figure B-1. Examples of complex and simple quadrilaterals. A simple quadrilateral can be
either concave or convex.

The interior angles of a quadrilateral can be used to detect whether a quadrilateral is

simple or complex. Any simple quadrilateral will have a sum of interior angles that add up to

360◦. If all interior angles are less than 180◦, the simple quadrilateral is said to be convex.

However if one interior angle is greater than 180◦, the simple quadrilateral is said to be

concave. The interior angles of complex quadrilaterals will add up to 720◦. An example of a

complex, concave, and convex quadrilaterals are shown in Fig. B-1.

The change of sign of cross products can be used to detect if a quadrilateral is complex

(as an interpretation of the interior angles). Let’s consider an arbitrary quadrilateral
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(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

A Complex

(x1, y1)

(x2, y2)

(x3, y3)

(x4, y4)

B Simple

Figure B-2. Construction of simple quadrilaterals. By swapping the vertices of (x1, y1) with
(x2, y2), the complex quadrilateral of A) becomes the simple quadrilateral in B).

represented by the following vectors:

AB =< x2 − x1, y2 − y1 > (B-2)

BC =< x3 − x2, y3 − y2 > (B-3)

CD =< x4 − x3, y4,−y3 > (B-4)

DA =< x1 − x4, y1 − y4 > (B-5)

The sign of the following cross products dictates whether a quadrilateral is self intersecting or

not.

AB ×BC (B-6)

BC ×CD (B-7)

CD ×DA (B-8)

DA×AB (B-9)

A complex quadrilateral exists if and only if two of the above cross products are negative and

the other two are positive. A simple quadrilateral will have at least three of the same sign cross
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products. The vertices of a complex quadrilateral can be used to create a simple quadrilateral

simply by rearranging the order as shown in Fig. B-2.

A pseudocode algorithm to compute the effective area between two curves is presented

as Algorithm 1. The algorithm first ensures that the two curves have the same number of

data points. If not, points are added to the curve with fewer points. The total number of

quadrilaterals created will be one less than the number of data points. Two consecutive points

are taken from each curve, acting as the vertices of the quadrilateral. Note that the order

of the data points which represent the curve is important. The first quadrilateral uses the

first and second data point from each curve, the second quadrilateral uses the second and

third data point from each curve and so forth. Each quadrilateral is then determined to be

either simple or complex. If the quadrilateral is complex, the vertices are reordered until the

quadrilateral becomes simple. The area of each simple quadrilateral is calculated using the

Gauss area formula, and all quadrilateral areas are summed to give an effective area between

curves.
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Algorithm 1: Compute the effective area between curveA and curveB.
1 function areaBetweenCurves (curveA, curveB);

Input : Data of curveA and curveB.
Output: Area between curveA and curveB.

2 # the length() function returns the number of data points
3 if length(curveA) < length(curveB) then
4 A = curveA;
5 B = curveB;
6 else
7 B = curveA;
8 A = curveB;
9 end

10 while length(A) < length(B) do
11 Compute distance between every two consecutive points of A;
12 Find the two points that generate the max distance;
13 Create a point that bisects these two points;
14 Add the bisect point to A in between the two points;
15 end
16 n = length(A) -1; # compute the number of quadrilaterals;
17 areas = zeros (n); # initiate zeros array for areas;
18 for i = 1 to n do
19 # Assemble quadrilateral;
20 quad = [A[i], A[i+1], B[i+1], B[i]];
21 if quad is not simple then
22 Rearrange the order of vertices until quad is simple;
23 end
24 # Calculate the Gauss/shoelace area of the quadrilateral;
25 areas[i] = gaussArea(quad);
26 end
27 # Return the summation of quadrilateral areas;
28 return sum(areas);
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APPENDIX C
LINE PLOT FOR KINEMATIC HARDENING PROBLEM

Line plots were performed in between data points of the kinematic hardening problem to

visualize the design space with different similarity measures. All objective function values were

normalized using

zi =
xi −min(x)

max(x)−min(x)
(C-1)

such that zero is the best found objective function, and one is the worst. The line plots

without noise are presented in Fig. C-1, and the line plots with noise are presented in Fig. C-2.

The line plots help to illustrate the state of the design space (for each measure of similarity)

between the optima found. Additionally it appears that the Area and Curve Length methods

produced smoother design spaces than the PCM and Discrete Fréchet methods. The line plots

were calculated from the results of the first SDRM optimization result, and sometimes display

a local optimum that the SDRM failed to find.
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DTW

Curve Length

C from PCM to DTW

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
a

liz
e

d
o

b
je

c
ti
ve

va
lu

e

Area

PCM

Discrete Fréchet
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DTW

Curve Length

J from DTW to Curve Length

Figure C-1. Without noise: Line plot with normalized objective values from one objective
optimum to another objective optimum.
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Figure C-2. With noise: Line plot with normalized objective values from one objective optimum
to another objective optimum.
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APPENDIX D
KINEMATIC HARDENING RESULTS

It is difficult to recognize the differences between similarity measures for the kinematic

hardening parameter identification from section 3.3. This appendix section shows the results

from section 3.3 for the individual hysteresis loops. The results of the hysteresis curve from

the parameter identification can be seen in Figs. D-1- D-5, and the results with noise in

Figs. D-6- D-10.
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Figure D-1. Area results for kinematic hardening parameter identification.
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Figure D-2. PCM results for kinematic hardening parameter identification.
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Figure D-3. Discrete Fréchet results for kinematic hardening parameter identification.

130



0.000 0.005 0.010 0.015 0.020

Strain

−600

−400

−200

0

200

400

600

S
tr

e
s
s

A first cycle

0.00 0.01 0.02 0.03 0.04

Strain

−800

−600

−400

−200

0

200

400

600

800

S
tr

e
s
s

B second cycle

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Strain

−750

−500

−250

0

250

500

750

S
tr

e
s
s

C third cycle

0.00 0.02 0.04 0.06 0.08

Strain

−750

−500

−250

0

250

500

750

1000

S
tr

e
s
s

D fourth cycle

0.00 0.02 0.04 0.06 0.08 0.10

Strain

−1000

−750

−500

−250

0

250

500

750

1000

S
tr

e
s
s

E fifth cycle

Figure D-4. DTW results for kinematic hardening parameter identification.
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Figure D-5. Curve Length results for kinematic hardening parameter identification.
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Figure D-6. Area results with noise for kinematic hardening parameter identification.
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Figure D-7. PCM results with noise for kinematic hardening parameter identification.
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Figure D-8. Discrete Fréchet results with noise for kinematic hardening parameter
identification.

0.000 0.005 0.010 0.015 0.020

Strain

−600

−400

−200

0

200

400

600

800

S
tr

e
s
s

A first cycle

0.00 0.01 0.02 0.03 0.04

Strain

−750

−500

−250

0

250

500

750

S
tr

e
s
s

B second cycle

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Strain

−750

−500

−250

0

250

500

750

1000
S

tr
e
s
s

C third cycle

0.00 0.02 0.04 0.06 0.08

Strain

−1000

−750

−500

−250

0

250

500

750

1000

S
tr

e
s
s

D fourth cycle

0.00 0.02 0.04 0.06 0.08 0.10

Strain

−1000

−750

−500

−250

0

250

500

750

1000

S
tr

e
s
s

E fifth cycle

Figure D-9. DTW results with noise for kinematic hardening parameter identification.
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Figure D-10. Curve Length results with noise for kinematic hardening parameter identification.
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