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Abstract B-basis failure strength represents the lower 10th percentile with 95% confidence level. In many risk averse 

applications the true statistical distribution is unknown, and the B-basis is calculated using a non-parametric formulation. 

Chebyshev’s inequality makes no assumption about the statistical distribution and can be used to bound the 10th percentile. 

It is possible to improve these bounds by restricting Chebyshev’s inequality to a class of statistical distributions.  B-basis 

failure strengths are compared using these methods on a collection of composite open hole tension tests.  
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1. Introduction 

The failure strength of open hole tension (OHT) tests is an important factor in the design of composite structures for 

aircraft [1]. B-basis failure strengths are usually considered to conservatively design redundant structures [2]. The B-basis 

estimates the 10th percentile with 95% confidence and is usually calculated assuming a statistical distribution [3]. If the 

failure strength from OHT samples resembles a known statistical distribution, then estimating the B-basis allowable is a 

straightforward procedure. Some common distributions for calculating the B-basis include the Normal, Lognormal, and 

Weibull. Unfortunately, identifying the appropriate distribution can be a difficult task, especially when only small number 

of samples are available [4]. 

 

Non-parametric statistics can be used to estimate the B-basis calculation when the distribution form is unknown. The 

MIL-HDBK-17-1F standard [5] has been a popular non-parametric B-basis calculation based on ordered statistics [6]. 

This method estimates the percentile via a ratio of the lowest observation to some critical observation. Alternatively, it is 

also possible to bound the tail probability using the general Chebyshev inequality. In terms of the B-basis, the inequality 

would represent the worst possible 10th percentile from all possible distributions with a given mean and given variance. 

The underlying difference between Chebyshev’s inequality is that it attempts to represent the worst possible 10th 

percentile, while the other B-basis methods attempt to estimate the percentile to 95% confidence. 

 

The bound from Chebyshev’s inequality is anticipated to be overly conservative, but restricting the inequality to a 

particular class of distributions may produce bounds that are not overly conservative. Grechuk et al. [7] developed a 

general methodology for deriving Chebyshev’s inequality for a class of distributions. It is possible that Chebyshev’s 

inequality restricted to a class of distributions may result in bounds that could rival traditional B-basis methods when the 

true distribution is unknown. The log-concave CDF class used in [8] appears to be a reasonable class, because it includes 

many distributions typically used in B-basis estimations and has a simple analytical expression. 

 

The paper goes on to describe various methods of estimating the 10th percentile from a small sample. The methods are 

then applied to OHT test conducted by [1] on four different configurations. The tests were conducted in batches of three, 

where each batch consisted of about six OHT tests. The bounded estimates from Chebyshev’s inequality are compared to 

the other B-basis estimates.  

2. Methods 

Composite open hole tension (OHT) tests are used to investigate the effect of the hole size on the tensile strength of 

composite laminates. The OHT tests were performed on a laminate with certain plate width (𝑤) to hole diameter (𝐷) 



 

 

ratios [1,2]. The laminate consisted of 20 plies stacked in a sequence of [0/90/0/90/45/−45/90/0/90/0]𝑠. The 0 and 

90 degree plies each accounted for 40% of the layup, while the 45 degree ply made up the remaining 20%. The methods 

describe how Chebyshev’s inequality can be used to estimate 10th percentile. Additionally the Normal, Lognormal, and 

non-parametric B-basis methods are presented. 

2.1 Chebyshev Inequality 

The standard one-sided Chebyshev Inequality for estimating the probability that a random variable X lies beyond a 

threshold 𝑎 is given as 

𝑃[𝑋 ≤ 𝜇 − 𝑎] ≤
𝜎2

𝑎2 + 𝜎2
 (1) 

 

where 𝑎 > 0, 𝜇 is the true mean, and 𝜎 is the true standard deviation. The B-basis for the OHT tests can be estimated by 

finding the threshold which results in a probability of 10 percent. This is solved by setting the right hand side of the 

equation equal to 0.1, and solving for 𝑎. Chebyshev’s inequality applies to any distribution with both finite mean and 

finite variance.  

 

Grechuk et al. [7] developed a general methodology for deriving Chebyshev’s inequality when the random variable 𝑋 is 

restricted to belong to a class of statistical distributions, thereby reducing the conservativeness. Symmetric, log-concave, 

and unimodal are examples of statistical distributions that Chebyshev’s inequality can be restricted to include 

distributions. 

 

Faridafshin et al. [8] used the methodology from [7] to derive the tightest possible Chebyshev Inequality for lower tail 

probabilities when X has log-concave CDF. This is expressed as 

𝑃[𝑋 ≤ 𝜇 − 𝑎] ≤ 𝛽 (2) 

where 𝑎 > 0, 𝛽 ∈ (0,1), and is the solution to the equation 

√1 + 2𝛽 log 𝛽 − 𝛽2

𝛽 − log 𝛽 − 1
=  

𝜎

𝑎
. (3) 

To estimate the threshold for a 10th percentile, set 𝛽 = 0.1 and solve for 𝑎. The log-concave CDF class includes all 

distributions where the log of the CDF is a concave function. This includes all Normal, Exponential, Gumbel, Laplace, 

Logistic, Rayleigh, Maxwell, Uniform, Lognormal, and Pareto distributions. Additionally, the log-concave CDF class 

includes subsets (limited to certain parameters) of the Weibull, Gamma, Beta, Power Function, Chi-square, and Chi 

distributions. Figure 1 shows the log of the CDF for the standard normal distribution, and a 4 degrees of freedom t-

distribution which does not have a log-concave CDF. 

 
Figure 1. The standard normal distribution has a log-concave CDF while Student’s t-distribution with 4 degrees of 

freedom (DOF) does not have a log-concave CDF. 

 

It can be useful to express the threshold in terms of a knockdown factor f distance from the standard deviation as  

𝜇 − 𝑎 =  𝜇 − 𝑓𝜎. (4) 

Using the general Chebyshev inequality to estimate the 10th percentile results in a knockdown factor of 𝑓 = 3.0, while 



 

 

selecting the log-concave CDF class of distributions results in a knockdown factor of 𝑓 = 1.928. The knockdown factor 

for Chebyshev’s inequality is constant, and does not depend upon the number of samples. However, it is based on a given 

mean and standard deviation, and their accuracy improves with increased number of samples. 

2.2 Normal and Lognormal B-basis  

The B-basis bound can be estimated from a Normal distribution using 𝜇 − 𝑓𝜎, where 𝑓 represents the knockdown factor 

for a normal distribution. This is calculated according to [9] as 

𝑓 =  
1

√𝑛
𝑡𝑛−1;0.95

∗ (1.2816√𝑛) (5) 

where 𝑛 is the sample size, 𝑡𝑑;1−𝛼
∗ (𝛿) is the (1 − 𝛼)-th quantile of a non-central t-distribution with 𝑑 degrees of freedom 

and non-centrality parameter 𝛿. This knockdown factor is also commonly expressed as 𝑘, and is tabulated in Table XII 

of [10]. Bhachu et al. [3] described that the Lognormal B-basis using the same knockdown factor from the Normal 

distribution as 

𝑥𝑏 = exp(𝜇𝑙 − 𝑓𝜎𝑙) (6) 

where 𝜇𝑙 and 𝜎𝑙 represent the mean and standard deviation of the log transformed sample.   

2.3 Non-parametric B-basis  

Bhachu et al. [3] described the non-parametric method for calculating the B-basis value when a collection of samples 

cannot be modeled by a Normal, Lognormal, or Weibull distribution. The non-parametric B-basis is calculated using 

ordered statistics, which first requires the sample to be in ascending order as 𝑥 =  {𝑥1, 𝑥2, ⋯ , 𝑥𝑛} for a sample size of 𝑛. 

The following equation is used to calculate the B-basis value  

𝑥𝑏 =  𝑥𝑟 [
𝑥1

𝑥𝑟
]

𝑘

 (7) 

where 𝒙𝟏is the lowest observed value in a sample, and 𝒓 is the rank index. The parameters 𝒓 and 𝒌 depend upon 

the number of samples, and can be looked up in MIL-HDBK-17-1F Table 8.5.14 from [5] when 𝒏 ≤ 𝟐𝟖. 

3. Results 

Lognormal B-basis, Non-parametric B-basis values, general Chebyshev inequality, and log-concave CDF Chebyshev 

inequality were used to estimate the 10th percentile for OHT tests from [1]. Tab.1 shows the results from individual 

batches, which ranged from 𝑛 = 6 to 𝑛 = 7 samples. The coefficient of variation (CV) is the ratio of the mean and 

standard deviation as  𝐶𝑉 =  𝜎/𝜇. The non-parametric B-basis was more conservative than the general Chebyshev 

inequality in 11 of 12 cases. The one case which was less conservative, happens to also be less conservative than the 

Normal B-basis. The sample set where the Normal B-basis was more conservative than the non-parametric method was 

[70.113, 64.881, 66.797, 64.996, 64.522, 68.6,  64.59] (ksi), and the non-parametric B-basis was calculated using 𝑟 = 5 

and 𝑘 = 2.858. The knockdown factor from the Lognormal distribution was always smaller than the Normal distribution. 

The Normal B-basis with six samples is nearly identical to  the general Chebyshev inequality. Note, however, that the 

Chebyshev inequalities were calculated based on sample mean and standard deviation, which may not be accurate 

representations of the underlying statistics. 

 

The failure strength from the pooled batches of OHT tests are presented in Tab.2. The number of samples here ranged 

from 𝑛 = 18 to 𝑛 = 20 samples. Here we see that the most conservative B-basis estimate comes from the general 

Chebyshev inequality, which was about 3 (ksi) smaller than the other B-basis estimates. The B-basis estimates from 

Normal, Lognormal, non-parametric, and log-concave CDF class were very similar. The knockdown factor of the Non-

parametric B-basis ranged from 𝑓 = 1.91 to 𝑓 = 2.19, while the knockdown factor from the Lognormal distribution 

ranged from 𝑓 = 1.88 to 𝑓 = 1.92. With the larger number of samples, the Lognormal B-basis estimate was the least 

conservative B-basis estimator. 

 



 

 

The knockdown factor changes for the Normal, Lognormal, and Non-parametric B-basis estimates depending on the 

sample size. A plot of the Normal knockdown factors, and the Chebyshev’s bounds is shown in Fig.2. The Chebyshev 

bound crosses the Normal B-basis at 6 samples, while the Log-concave CDF bound crosses at 20 samples. The largest 

knockdown factor from the non-parametric B-basis method was 𝑓 = 5.99  with 6 samples, which is on the order of 

having only three samples from a Normal distribution. 

 

 

Table 1. B-basis and Chebyshev’s inequality thresholds for batches of OHT tests.  

OHT Test Description 𝑛 𝜇 (ksi) CV % Normal B-basis 

(ksi, 𝑓) 

Lognormal B-

basis (ksi, 𝑓) 

Non-parametric 

B-basis (ksi, 𝑓) 

Log-concave 

CDF Class 

Bound (ksi, 𝑓) 

Chebyshev’s 

Bound (ksi, 𝑓) 

𝑤

𝐷
= 3 Laminate batch 1 6 57.619 3.461 51.624, 3.006 51.897, 2.870 46.332, 5.660 53.775, 1.928 51.636, 3.000 

𝑤

𝐷
= 3 Laminate batch 2 6 63.31 3.408 56.824, 3.006 57.136, 2.862 52.440, 5.038 59.151, 1.928 56.837, 3.000 

𝑤

𝐷
= 3 Laminate batch 3 6 57.984 5.218 48.888, 3.006 49.557, 2.785 45.963, 3.973 52.152, 1.928 48.907, 3.000 

𝑤

𝐷
= 4 Laminate batch 1 6 63.77 4.033 56.038, 3.006 56.389, 2.870 48.368, 5.989 58.813, 1.928 56.054, 3.000 

𝑤

𝐷
= 4 Laminate batch 2 6 65.164 2.762 59.753, 3.006 59.972, 2.885 57.108, 4.476 61.695, 1.928 59.765, 3.000 

𝑤

𝐷
= 4 Laminate batch 3 6 60.731 3.411 54.503, 3.006 54.823, 2.852 51.157, 4.621 56.738, 1.928 54.516, 3.000 

𝑤

𝐷
= 6 Laminate batch 1 7 66.357 3.362 60.210, 2.755 60.521, 2.616 60.499, 2.626 62.057, 1.928 59.664, 3.000 

𝑤

𝐷
= 6 Laminate batch 2 7 68.656 4.828 59.523, 2.755 59.783, 2.677 49.256, 5.853 62.267, 1.928 58.712, 3.000 

𝑤

𝐷
= 6 Laminate batch 3 6 64.253 2.527 59.372, 3.006 59.522, 2.914 56.115, 5.012 61.123, 1.928 59.382, 3.000 

𝑤

𝐷
= 8 Laminate batch 1 6 67.254 3.202 60.780, 3.006 61.050, 2.881 56.111, 5.174 63.103, 1.928 60.794, 3.000 

𝑤

𝐷
= 8 Laminate batch 2 6 70.71 4.913 60.266, 3.006 61.009, 2.792 56.259, 4.160 64.014, 1.928 60.288, 3.000 

𝑤

𝐷
= 8 Laminate batch 3 6 69.835 3.769 61.922, 3.006 62.374, 2.835 56.691, 4.994 64.762, 1.928 61.939, 3.000 

 

Table 2. B-basis and Chebyshev’s inequality thresholds for pooled batches of OHT tests. 

OHT Test Description 𝑛 𝜇 (ksi) CV % Normal B-basis 

(ksi, 𝑓) 

Lognormal B-

basis (ksi, 𝑓) 

Non-parametric 

B-basis (ksi, 𝑓) 

Log-concave 

CDF Class 

Bound (ksi, 𝑓) 

Chebyshev’s 

Bound (ksi, 𝑓) 

𝑤

𝐷
= 3 All three batches 18 59.638 5.903 52.689, 1.974 53.020, 1.880 52.745, 1.958 52.852, 1.928 49.077, 3.000 

𝑤

𝐷
= 4 All three batches  18 63.222 4.414 57.714, 1.974 57.867, 1.919 57.114, 2.189 57.843, 1.928 54.845, 3.000 

𝑤

𝐷
= 6 All three batches 20 66.530 4.521 60.874, 1.926 60.936, 1.905 60.916, 1.912 60.870, 1.928 57.720, 3.000 

𝑤

𝐷
= 8 All three batches 18 69.266 4.386 63.270, 1.974 63.523, 1.891 63.138, 2.017 63.410, 1.928 60.152, 3.000 

  

 
Figure 2. Knockdown factors for the Normal B-basis as a function of the number of samples. 

 



 

 

Histograms of the pooled OHT batches are presented in Fig.3. The pooled batches consist of 18 to 20 samples, and 

it’s not particularly easy to identify the possible true distribution. This is perhaps most evident with the 𝑤/𝑑 = 4 

test. It is even more difficult to estimate the distribution from a single batch of just 6 or 7 samples. 

 

 
a) All three batches OHT tests 

𝑤

𝐷
= 3  

 
b) All three batches OHT tests 

𝑤

𝐷
= 4 

 
c) All three batches OHT tests 

𝑤

𝐷
= 6 

 
d) All three batches OHT tests 

𝑤

𝐷
= 8  

 

Figure 3. Histogram of the combined batches of OHT configurations. 

 

4. Discussion 

There is the potential to improve B-basis estimates with 6 or 7 samples, as there was a large penalty the non-parametric 

B-basis method over the Normal and Lognormal distributions. In the worst case the knockdown factor of the non-

parametric distribution was nearly twice as large as the Normal distribution. Additionally, there was one case where the 

non-parametric B-basis was not as conservative as the Normal distribution.  

 

Differences between the B-basis methods was hardly noticeable with samples totaling 18 to 20. The Normal, Lognormal, 

non-parametric, and Log-concave CDF bounds were basically identical, with the Lognormal resulting in the least 

conservative estimate. While the non-parametric B-basis could have a huge knockdown factor of 𝑓 = 5.99 with 6 

samples, the knockdown factor reduced to approximately 𝑓 = 2.0 with 18 samples, which is on par to the other mentioned 

methods. 

 

One potential issue is that Chebyshev’s inequality requires the true mean and true standard deviation, while bounded 

estimates were performed on the sample mean and standard deviation. It is possible to account for the potential uncertainty 

in the sample mean and standard deviation with Bootstrapping, which wouldn’t make additional assumptions about the 

potential true distribution. This would result in a distribution of bounded estimates from the possible means and standard 

deviations. The estimated bound could then be selected for an appropriate confidence level. It is worthwhile to point out 

that in this case where the uncertainty in the sample means and standard deviations were neglected, the general Chebyshev 



 

 

and Log-concave CDF bounds were comparative to the other B-basis calculations. 

5. Conclusion 

Traditional B-basis methods attempt to estimate the 10th percentile to a 95% confidence level for a collection of 

samples. If the true distribution is unknown, then non-parametric statistics are used to estimate the B-basis. The 

non-parametric estimate will be very conservative for a small number of samples, as a cost of not knowing the true 

distribution. For instance, there was an OHT batch of 6 samples where the non-parametric B-basis was 6 standard 

deviations away from the mean. There may be better ways to approach non-knowing the true distribution with six 

or 7 samples than the non-parametric B-basis. An additional concern was that the non-parametric B-basis was not 

always more conservative than the B-basis from a Normal distribution. The general Chebyshev inequality can be 

applied to estimate a bounded 10th percentile for any distribution with a known mean and variance. With 6 or 7 

samples in the OHT tests, the general Chebyshev’s inequality was comparable to the Normal distribution. 

Chebyshev’s inequality restricted to the log-concave CDF class was comparable to a Normal B-basis with about 20 

samples. Although with 20 samples, B-basis estimates from the Normal, Lognormal, and non-parametric methods 

were nearly the same.  It’s possible to restrict Chebyshev’s inequality to only apply to a particular class of statistical 

distributions. The log-concave CDF class applies to many distributions that are commonly used to estimate tail 

probabilities. Perhaps some restricted class (like the Log-concave CDF) could be used to improve B-basis estimates 

for unknown distributions with 6 or so samples.  

References 

1. Tomblin, J., & Seneviratne, W. (2009). Laminate Statistical Allowable Generation for Fiber-Reinforced Composite 

Materials: Lamina Variability Method. Office of Aviation Research and Development, Federal Aviation 

Administration. 

2. Zhang, Y., Schutte, J., Meeker, J., Palliyaguru, U., Kim, N. H., & Haftka, R. T. (2017). Predicting B-basis allowable 

at untested points from experiments and simulations of plates with holes. In 12th World Congress on Structural and 

Multidisciplinary Optimization. Braunschweig, Germany. 

3. Bhachu, K. S., Haftka, R. T., & Kim, N. H. (2016). Comparison of Methods for Calculating B-Basis Crack Growth 

Life Using Limited Tests. AIAA Journal, 54(4), 1287–1298. https://doi.org/10.2514/1.J054094 

4. Romero, V. J., Schroeder, B. B., Dempsey, J. F., Breivik, N. L., Orient, G. E., Antoun, B. R., … Winokur, J. G. 

(2018). Simple Effective Conservative Treatment of Uncertainty From Sparse Samples of Random Variables and 

Functions. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 

4(4), 41006–41017. Retrieved from http://dx.doi.org/10.1115/1.4039558 

5. U.S. Department of Defense, MIL-HDBK-17-1F Polymer Matrix Composites, Volume 1: Guidelines for 

Characterization of Structural Materials. (2002). 

6. Neal, D. M., & Vangel, M. G. (1990). Statistically Based Material Properties. A Military Handbook-17 Perspective. 

ARMY LAB COMMAND WATERTOWN MA MATERIAL TECHNOLOGY LAB. 

7. Grechuk, B., Molyboha, A., & Zabarankin, M. (2010). Chebyshev inequalities with law-invariant deviation measures. 

Probability in the Engineering and Informational Sciences, 24, 145–170. 

https://doi.org/10.1017/S0269964809990192 

8. Faridafshin, F., Grechuk, B., & Naess, A. (2017). Calculating exceedance probabilities using a distributionally robust 

method. Structural Safety, 67, 132–141. https://doi.org/10.1016/j.strusafe.2017.02.003 

9. Young, D. S. (2010). tolerance: An R Package for Estimating Tolerance Intervals. Journal of Statistical Software; 

Vol 1, Issue 5 (2010). Retrieved from https://www.jstatsoft.org/v036/i05 

10. Montgomery, D. C., & Runger, G. C. (2014). Applied statistics and probability for engineers (6th ed.). John Wiley 

& Sons, Inc. 

 

https://doi.org/10.1017/S0269964809990192

