Isotropic and orthotropic material parameter identification from full-field bulge inflation tests on PVC-coated polyester Special attention to the objective function C.F. Jekel, R.T. Haftka, M.P. Venter, G. Venter September 2, 2019 University of Florida, Gainesville, USA SEMC 2019 # Different fields use different discrepancy measures - · Discrete Fréchet distance - L_{∞} norm - · hand writing analysis - Dynamic Time Warping (DTW) - · L₁ norm - · voice recognition - [1] showed that these method produce different kinematic hardening parameters - Different objective functions produce different parameters Optimum results for Discrete Fréchet distance and DTW on tension-compression-tension curve. # Obtaining material model parameters: emphasis on objective #### **Objective function** How we quantify the discrepancy between models and experiments - Finite Element (FE) material model parameters for Isotropic and orthotropic models - Bulge inflation test match full displacement field data to FE model - Demonstrate how two different objective functions the choice in objective function influences material parameters # **PVC-coated Polyester** - · Complex non-linear behavior - In-plane weave of polyester yarns - Coating makes material impermeable - · Non-continuous material - Commonly modeled as continuous orthotropic in FE models Illustration of woven yarns from Ellis [2]. Through thickness effect of the weave from Ellis [2]. A roll of PVC-coated polyester. # Bulge inflation tests - Circularly clamped material - Record inflation pressure (up to \approx 3.0 bar) - Digital Image Correlation (DIC) measures the full-field displacements - Displacement components Δx , Δy , Δz - Experiments performed at Stellenbosch University, South Africa Overview of bulge inflation test setup. # Typical FE model displacement fields Displacement fields of FE model at 2.0 bar and orthotropic properties. Left Δx , Center Δy , Right Δz . Note field data is symmetric. - Displacement field data as function of inflation pressure - · Order of magnitude issue: Δz is about 10x larger than Δx or Δy # Isotropic and orthotropic material models Identifying representative material models. Material stiffness is dependent upon direction, thus anticipate orthotropic model will represent material behavior better. ## Isotropic - · Single unknown parameter E - Fixed $\nu = 0.24$ ## Simplified orthotropic - Three unknown parameters E_1 , E_2 , G_{12} - Fixed $\nu_{12} = 0.24$ # Discrepancies between FE model and Experiments Considering the residual displacement components equally: $$e = r_{\Delta x}(\beta) + r_{\Delta y}(\beta) + r_{\Delta z}(\beta) \tag{1}$$ Relative weighted residual displacements: $$e_{W} = r_{\Delta x}(\beta) + r_{\Delta y}(\beta) + \frac{1}{10}r_{\Delta z}(\beta)$$ (2) #### Compare these two objective functions Show that minimizing e or e_w will result in different material parameters. # Optimization process for material parameter identification minimize: $$e(\beta)$$ (3) subject to: $$\beta_l \le \beta_k \le \beta_u$$, $k = 1, 2, \dots, n_p$. (4) ## Process to compute single objective function: | Step | Description | |------|---| | 1 | Write the material model parameters to the ABAQUS input file | | 2 | Run ABAQUS solver on the input file | | 3 | Export displacement field of FE model | | 4 | Load the FE displacement field into memory | | 5 | Compute the discrepancy between FE model and DIC data | | 6 | Compute the final objective function of e or $e_{\scriptscriptstyle W}$ | Multi-start gradient based optimization algorithm to minimize the objective function # Differences of using e or e_w as objective function - Four experimental tests - Isotropic and orthotropic material parameters - Differences with minimizing e or e_w ## Isotropic results **Table 1:** One parameter isotropic material results from each inverse analysis. Note ν was fixed to 0.24. | | Minimizing e | Minimizing e _w | | |--------|----------------|---------------------------|--| | | <i>E</i> (GPa) | E (GPa) | | | Test 1 | 0.279 | 0.283 | | | Test 2 | 0.222 | 0.292 | | | Test 3 | 0.242 | 0.282 | | | Test 4 | 0.218 | 0.253 | | - · Highlighted big differences in Test 2 and 3! - \cdot e_{w} resulted in more consistent moudli across the 4 tests # Orthotropic results **Table 2:** Resulting orthotropic material parameters from minimizing tests independently with each inverse analysis. Note that ν_{12} was fixed to 0.24. | | Minimizing e (GPa) | | | Minimizing e _w (GPa) | | | |--------|--------------------|-------|----------|---------------------------------|-------|----------| | | E_1 | E_2 | G_{12} | E ₁ | E_2 | G_{12} | | Test 1 | 0.34 | 0.25 | 0.005 | 0.30 | 0.23 | 0.005 | | Test 2 | 0.21 | 0.24 | 0.004 | 0.31 | 0.23 | 0.005 | | Test 3 | 0.22 | 0.26 | 0.004 | 0.31 | 0.23 | 0.005 | | Test 4 | 0.24 | 0.22 | 0.004 | 0.28 | 0.22 | 0.005 | - · Highlighted most drastic changes - Minimizing e_w resulted in more consistent parameters - Minimizing e was unable to identify $E_1 > E_2$ or vice versa # Conclusions - carefully consider objective function Previous work [1] showed that **different objective functions** (L_1, L_2, L_∞) lead to substantially different material parameters. This work shows that different normalization schemes also do. ## On the difference in e and e_w objective functions e_w more consistent parameterse_w better identified E₁ and E₂ ### References i - [1] Jekel, C.F., Venter, G., Venter, M.P. et al., Similarity measures for identifying material parameters from hysteresis loops using inverse analysis, Int J Mater Form (2019) 12: 355. https://doi.org/10.1007/s12289-018-1421-8 - [2] Ellis, D.R., 2017. Mechanical characterisation for simplified response modelling of woven polypropylene (Masters Thesis, Stellenbosch University). ## Residual plot Δx test 4 ## Residual plot Δy test 4 # Residual plot Δz test 4