Risk Allocation for Design Optimization with Unidentified Statistical Distributions

SciTech AIAA Non-Deterministic Approaches

Charles Jekel and Raphael Haftka

Jan 06, 2020

University of Florida cj@jekel.me https://jekel.me

- The RBDO community often assumes you can identify statistical distributions
- $\cdot\,$ It is difficult to identify statistical distributions in practice
- Regulators (e.g. FAA) tell you what to do when you can not identify the statistical distribution

Perhaps the regulators are more statistically savvy!

Obtaining conservative failure allowables

- You have performed a handful of tests on a material
- What failure strength do you use? (failure allowable)
- · Deal with epistemic and aleatory uncertainty
- How to conservatively estimate the failure strength
- Various tolerance interval methods

- 1. Conservative estimation of failure strength
- 2. Non-parametric and Hanson Koopmans tolerance intervals
- 3. Simple risk allocation RBDO for UAV redesign

Conservative estimate of failure strength

Figure 1: Histogram of 18 tension tests on composite material.

```
Charles Jekel · https://jekel.me
```

One-sided tolerance interval to estimate allowable strength

Figure 2: Estimating the 10th percentile to 95% confidence.

One-sided tolerance intervals for Aerospace

- 1st percentile to 95% confidence (A-basis): used in non-redundant structures
- 10th percentile to 95% confidence (B-basis): used in redundant structures
- FAA regulations on how to calculate failure strength allowables
- If distribution is known, easy to calculate!

It's difficult in practice to identify a known distribution

- You may have too much data
 - Tiny deviations from a distribution are enough to reject that samples come from that distribution
- You may have too little data

I'm not sure where this sweet spot exists...

Consider this sample of 10 (from standard Normal distribution) x = [0.98, -0.7, 0.95, -1.67, -1.4, 0.73, -0.2, 1.76, 1.18, 1.62]

 Table 1: KS-Test 95% confidence: reject distribution if P-value < 0.05</th>

Distribution	P-value	Reject?
Normal	0.57	False
Lognormal	0.57 False	
Weibull	0.92	False
Gamma	0.52	False
Student's t	0.57	False

The random sample could have come from just about any distribution!

Order a random sample **x** as

$$x_1 \le x_2 \le \dots \le x_n \tag{1}$$

then the non-parametric tolerance interval for ${\it P}$ and γ confidence is expressed as

(2)

where *i* is determined from *P* and γ

Solves the tolerance interval problem with large samples! However, it doesn't work well with small data.

Non-parametric failure strength on previous 18 samples

Figure 3: With just 18 samples, the non-parametric tolerance interval is limited to certain percentile confidence levels.

The tolerance interval is defined as

$$x_j - b(x_j - x_i) \tag{3}$$

where b is solved depending on i, j, P, γ, N

- *b* has been difficult to solve for (until today...)
- Sporadic use in FAA, SAE, mil-spec...
- Hanson-Koopmans assumes the true distribution is in the Log-Concave CDF class
- Non-parametric assumes the true distribution is continuous

Hanson-Koopmans failure strength of previous 18 samples

Figure 4: With just 18 samples, the Hanson-Koopmans tolerance interval can be calculated for any percentile and confidence.

My tiny Python library for tolerance intervals

https: //github.com/cjekel/tolerance_interval_py

- Calculate one-sided tolerance intervals for Normal, Lognormal, Non-parametric, and Hanson-Koopmans methods
- Calculate Hanson-Koopmans b for any j, N, P, γ

```
import numpy as np
import toleranceinterval as ti
x = np.random.random(100)  # random sample of n=100
# estimate the 10th percentile to 95% confidence
bound = ti.oneside.hanson_koopmans(x, 0.1, 0.95)
```

```
Charles Jekel · https://jekel.me
```

- Fairly common statistical distribution class
- Includes all: Normal, Exponential, Gumbel, Laplace, Logistic, Rayleigh, Maxwell, Uniform, Lognormal, and Pareto distributions
- Also includes subsets of other distributions
- Composite material handbook: composite failure strength generally follows the Log-Concave CDF class

Visual example of what is Log-Concave CDF

Figure 5: The log of the CDF for the Uniform and Normal distributions is concave, while Student's t-distribution in convex.

```
Charles Jekel · https://jekel.me
```

Risk allocation

Individual components have different probabilities of failure.

Some potential advantages of risk allocation:

- · Lower weight for same system probability of failure
- Lower system probability of failure for same weight

- Apply Hanson Koopmans methods to do redesign a UAV
- Initial UAV design assumed components have equal safety margins (similar to FAA regulations)
- Redesign the wing and horizontal tail to have difference probabilities of failure

Initial design of UAV

- Takeoff weight 15 lbs
- Wing weight 1.35 lbs
- Horizontal tail weight 0.3 lbs
- Wingspan 9 ft
- Both wing and tail are fully stressed
- Stress allowable 1st percentile to 95% confidence from Hanson Koopmans on the 18 tests

Figure 6: Image of Puma 3 AE by AeroVironment[®] inspired these design specs.

The wing and tail failures are assumed to be independent, thus the system probability of failure is

$$P_f = 1 - (1 - P_w)(1 - P_t)$$
(4)

where P_w and P_t are the failure allowables.

The component weight can be assumed to be inversely proportional to change of failure allowable

$$\frac{\sigma_i}{\sigma_n} = \frac{W_n}{W_i} \tag{5}$$

from changing the skin thickness.

Simple risk allocation RBDO

- Minimize the weight of the wing and horizontal tail
- By changing the allowable failure strength for each component
- Such that the system has the same probability of failure

$$\min w = w_w(p_w, \gamma_w) + w_t(p_t, \gamma_t)$$
(6)

such that:
$$P_f \le 0.02$$
 (7)

$$\gamma_{\rm W} = \gamma_t = 0.95 \tag{8}$$

Results when using the Hanson-Koopmans method

Figure 7: Contour plot of the objective function when using the Hanson-Koopmans method. Charles Jekel · https://jekel.me

Results along the constrain boundary

Figure 8: Line plot of the objective function along the constrain boundary when using the Hanson-Koopmans method.

Table 2: Comparison of the UAV specifications from the previousequal safety margin design and the new RBDO optimal design.

	Equal safety margin	RBDO	RBDO
	Hanson-Koopmans	Hanson-Koopmans	Normal
P_f	0.020	0.020	0.020
P_W	0.010	0.016	0.017
P_t	0.010	0.004	0.003
w _w , lb	1.35	1.30	1.16
w _t , lb	0.30	0.32	0.27
w, lb	1.65	1.62	1.43

- Lighter UAV for the same probability of failure using risk allocation
- Risk allocation between Hanson Koopmans and Normal distribution resulted in similar component failure probabilities
- Hanson Koopmans UAV was \approx 15% heavier than using a Normal distribution

- RBDOs often assume that it is possible to identify statistical distributions
- It is difficult to identify statistical distributions
- Regulation (e.g. FAA) have methods when it is not possible to identify the distribution
- Classes of distributions may be an approach to make RBDOs more robust