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What are Richtmyer-Meshkov or Rayleigh-Taylor instabilities?

Snapshots of density in time increments of 0.1μs from left to right as an RMI forms. 

§ Rayleigh–Taylor instability occurs at an interface of two different densities [2]
— Water suspended above oil

§ Richtmyer-Meshkov Instability (RMI) is impulsively accelerated
— Two substances with different density
— Some initial small perturbation between materials
— Shock wave through interface causes large “jet-like” growths
— Various importance and interest (e.g. ICF at NIF [1] [3])

§ The Darkstar SI seeks to ‘control’ RMI (PI Jon Belof)
— State of the art experiments and computations
— Machine Learning to predict RMI
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Various Impact experiments to design for RMI 

§ Seeking designs that maximize RMI

§ Also attempting to mitigate known RMI

§ Current ideas

Double wave targets

Impactor Target
velocity

Double wave targets Graded buffer

velocityvelocity velocity
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Simulated RMI at the same impact velocity
Changing impact materials and initial amplitude
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How well do simulations agree with experiments?

Comparison with sinusoidal wave.

§ HEAF gas gun experiments
— 9cm diameter
— Hector Lorenzana, Jeff Nguyen, Mike Armstrong
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Previous work to model Rayleigh–Taylor instability

§ Generator portion of DCGAN model [4]
— Fake celebrity faces
— Trained in Regression
• Not using GAN or Auto Encoder
• Thomas Stitt and Dan White

§ Prediction of Rayleigh–Taylor instability
— 2 parameter input
— 128 x 128 ‘images’

Left MARBL Simulation, Right ML prediction
Fake celebrity images from 
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
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A parameterized simulation to study RMI

§ 3 parameters to change
— Changes impactor side front
— B, Q, S

§ Machine learning ready tools!
— MARBL
• ALE Hydrodynamics 

— Ascent
• Fast ray tracing ‘images’

— Merlin
• HPC workflow management
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Machine learning model overview 

Machine 
Learning Model

§ Model predicts full RMI formation
— Input: Initial conditions
— Output: Full field response 

Entire time dependent 
density field prediction

3 input parameters 
defining initial conditions

§ Why do this?
— Use ML model to quickly explore designs
— Optimization on the ML model is fast
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Machine learning dataset at a glance

§ For the three parameter study
— 1,600 simulations
• 30 hours with 20 Lassen/Sierra nodes

— 51 times steps per simulation
— 5 output fields
• Density
• Velocity X & Y
• Energy
• Materials

— 1024 x 1024 “pixels”
— 427,819,008,000 single precision floats

§ Larger studies in the works
— More parameters
— More complicated physics 143 - 12 GB h5 files
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The ML model in this work
See ‘Generator’ model from DCGAN [4]

Trainable parameters: 15,407,040
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What’s the input?
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Layer by layer progression
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Input and Output
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Node

Distributed data model training paradigm

GPUs

GPUs

GPUs
Dataset

Training Data: 1461 Sims
Test Data: 165 Sims

2 fields: Density and Velocity

Total Floats: 171,127,934,904
Size: 685 GB

§ Dataset split among multiple nodes

§ Each GPU
— receives unique fraction of dataset
— Duplicate copy of model and optimizer
— MPI syncs model and optimizer states

§ GPU memory limited
— Can only generate N number of  

2x1024x1024 ‘images’ at a time
— More GPUs -> faster training and inference 

throughput



15
LLNL-PRES-1049135

Best left-out ‘test’ simulation comparison

§ Lowest L1 error in test set

§ Epoch 400

§ MARBL simulation top

§ ML prediction bottom

MARBL 
simulation

ML Model



16
LLNL-PRES-1049135

Worst left-out ‘test’ simulation comparison

§ Highest L1 error in test set

§ Epoch 400

§ MARBL simulation top

§ ML prediction bottom

MARBL 
simulation

ML Model
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More pixels gave us much more detail
but significantly increase computation demand

1024x1024 256x256

Lowest MAE from each left-out ’test’ set shown
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Dataset
Training Data: 1461 Sims

Test Data: 165 Sims
2 fields: Density and Velocity

Total Floats: 171,127,934,904
Size: 685 GB

Data compression of the ML model

§ 1626 simulations

§ 171 billion floats

§ Exported model is 178 MB

§ 4,000 to 1 compression

§ Brings data visualization from HPC 
world to laptop world

§ With losses to accuracy/detail
ML Model
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Using the ML model to do an inverse analysis

I want to find this at t=7 within my 
simulation domain

§ Use ML model to find [B, Q ,S] that 
give us the time profile on the right

§ Ignore whitespace

§ No perfect solution, I drew this by 
hand and code
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Formulate an optimization problem

§ Find X that minimizes

§ X = 𝐵,𝑄, 𝑺
— These are the input parameters to the ML model!

§ L-BFGS-B (scipy) on ML model

§ Derivatives available from ML model!

MSE

Goal to find X that 
produces this 

instability at t=7

Result of some 
candidate X
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Inverse optimization results

§ Optima from 100 runs shown on right

§ Lots of local minima shown in histogram

§ Single optimization could run on a laptop
— 1 minute for 120 function evaluations
— CPU only MSE = 1.64

Goal to find X that 
produces this 

instability at t=7

Optimization result
X = [ 0.162, 24.9, 2.08]

Prediction from ML
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Full ML prediction of inverse optimization

MSE = 1.64

Goal to find X that 
produces this 

instability at t=7

Optimization result
X = [ 0.162, 24.9, 2.08]

Prediction from ML
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How can you trust your ML model’s predictions?

§ Trying to use first principles 
to infer the accuracy of our 
predictions

§ These metrics can be 
calculated without running 
a simulation

§ Simulations are all closed 
domain, so these equations 
should be preserved
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How can you trust your ML model’s predictions?

§ Trying to use first principles 
to infer the accuracy of our 
predictions

§ These metrics can be 
calculated without running 
a simulation

§ Simulations are all closed 
domain, so these equations 
should be preserved

§ Continuity Equation
—
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Momentum conservation vs L1 error at ‘early’ epoch

Correlation value: 0.77

§ A model with random shows 
strong correlation

§ This is a ‘reasonable’ ml model 
that shows strong correlation!

§ As model training continues, 
sometimes these correlations get 
worse

§ Active research in progress
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Conclusions

§ ML modeling of RMI from MARBL simulations

§ ML model allows for quick visualization of a design space

§ ML models can be ‘run backwards’ and inverted

§ Demonstrated ML model to interpolate between 
simulations

§ This is just another tool to further our understanding of 
complicated physics phenomena

§ Dataset generation
— 1,600 simulations
— 600 Node hours (Lassen/Sierra)

§ ML model training
— 40 GPUs
— 85 Node hours (Lassen/Sierra)

§ ML model vs MARBL sims
— 1,000 times faster
— 4,000 to 1 data compression
— Derivative information
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The ‘Generator’ of the DCGAN from [4] used in this work

==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
Generator                                -- --
├─Sequential: 1                          -- --
│    └─Identity: 2-1                     [30, 4, 1, 1]             --
│    └─ConvTranspose2dMod: 2-2           [30, 512, 4, 4]           33,792
│    └─ConvTranspose2dMod: 2-5           [30, 512, 8, 8]           4,195,328
│    └─ConvTranspose2dMod: 2-8           [30, 512, 16, 16]         4,195,328
│    └─ConvTranspose2dMod: 2-11          [30, 512, 32, 32]         4,195,328
│    └─ConvTranspose2dMod: 2-14          [30, 256, 64, 64]         2,097,664
│    └─ConvTranspose2dMod: 2-17          [30, 128, 128, 128]       524,544
│    └─ConvTranspose2dMod: 2-20          [30, 64, 256, 256]        131,200
│    └─ConvTranspose2dMod: 2-23          [30, 32, 512, 512]        32,832
│    └─ConvTranspose2d: 2-26             [30, 2, 1024, 1024]       1,024
├─Tanh: 1-3                              [30, 2, 1024, 1024]       --

Trainable parameters: 15,407,040
Total mult-adds: 1.23 (T)
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What’s the input?

==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
Generator                                -- --
├─Sequential: 1                          -- --
│    └─Identity: 2-1                     [30, 4, 1, 1]             --
│    └─ConvTranspose2dMod: 2-2           [30, 512, 4, 4]           33,792
│    └─ConvTranspose2dMod: 2-5           [30, 512, 8, 8]           4,195,328
│    └─ConvTranspose2dMod: 2-8           [30, 512, 16, 16]         4,195,328
│    └─ConvTranspose2dMod: 2-11          [30, 512, 32, 32]         4,195,328
│    └─ConvTranspose2dMod: 2-14          [30, 256, 64, 64]         2,097,664
│    └─ConvTranspose2dMod: 2-17          [30, 128, 128, 128]       524,544
│    └─ConvTranspose2dMod: 2-20          [30, 64, 256, 256]        131,200
│    └─ConvTranspose2dMod: 2-23          [30, 32, 512, 512]        32,832
│    └─ConvTranspose2d: 2-26             [30, 2, 1024, 1024]       1,024
├─Tanh: 1-3                              [30, 2, 1024, 1024]       --

Batch Size 3 Parameters + 
Simulation time

[B, Q, S, t]
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Layer by layer progression

==========================================================================================
Layer (type:depth-idx)                   Output Shape              Param #
==========================================================================================
Generator                                -- --
├─Sequential: 1                          -- --
│    └─Identity: 2-1                     [30, 4, 1, 1]             --
│    └─ConvTranspose2dMod: 2-2           [30, 512, 4, 4]           33,792
│    └─ConvTranspose2dMod: 2-5           [30, 512, 8, 8]           4,195,328
│    └─ConvTranspose2dMod: 2-8           [30, 512, 16, 16]         4,195,328
│    └─ConvTranspose2dMod: 2-11          [30, 512, 32, 32]         4,195,328
│    └─ConvTranspose2dMod: 2-14          [30, 256, 64, 64]         2,097,664
│    └─ConvTranspose2dMod: 2-17          [30, 128, 128, 128]       524,544
│    └─ConvTranspose2dMod: 2-20          [30, 64, 256, 256]        131,200
│    └─ConvTranspose2dMod: 2-23          [30, 32, 512, 512]        32,832
│    └─ConvTranspose2d: 2-26             [30, 2, 1024, 1024]       1,024
├─Tanh: 1-3                              [30, 2, 1024, 1024]       --

Very first 
kernel 4 x 4

Every layer doubles

Final 
1024x1024 

‘image’
2 fields output, 

density and velocity
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What is “ConvTranspose2dMod”

========================================
Layer (type:depth-idx)
========================================
ConvTranspose2dMod                      
├─Sequential: 1
│    └─Identity: 2-1                     
│    └─ConvTranspose2d: 2-2              
│    └─BatchNorm2d: 2-3                  
│    └─ReLU: 2-4                         

Just a standard ConvTranspose2d with Batch Norm and activation layer!
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Training the model from scratch

§ 40 GPUs in total
— 10 Lassen Nodes
— 8.5 hours for 500 epochs

§ Minimize Mean Absolute Error (MAE)
— Showing MSE and L-infinity as well

§ Test / Train split
— 165 simulations / 1461 simulations

§ Adam learning rate of 1e-3

Objective 
Function
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Correlations between first principles and L1 error ‘early’ epoch

Correlation values
[-0.5, 0.77, 0.31, -0.256, 0.74]
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Correlations between first principles and L1 error at ‘final’ epoch

Correlation values
[0.52, 0.54, 0.52, 0.24, 0.19]
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What to make of the physics based error indicators?

§ Simple physics based errors can be used to infer ML accuracy

§ ML Momentum violations do correlate to ML accuracy
— Other metrics show promise too

§ Included some in loss function for PINN [5] ML model
— Makes the training very difficult
— Unclear how to balance equations

§ Very much active research in progress
— Believe this can have profound impacts in our field


