Learning Richtmyer-Meshkov Instability Fields from Parametrized Hydrodynamic Simulations

JOWOG 34 ACS

Charles F. Jekel, Dane M. Sterbentz, Sylvie Aubry, Youngsoo Choi, Daniel A. White, Jon L. Belof

This work was supported by the LLNL-LDRD Program under Project No. LDRD 21-SI-006.
February 28 - March 4, 2022

What are Richtmyer-Meshkov or Rayleigh-Taylor instabilities?

- Rayleigh-Taylor instability occurs at an interface of two different densities [2]
- Water suspended above oil
- Richtmyer-Meshkov Instability (RMI) is impulsively accelerated
- Two substances with different density
- Some initial small perturbation between materials
- Shock wave through interface causes large "jet-like" growths
- Various importance and interest (e.g. ICF at NIF [1] [3])
- The Darkstar SI seeks to 'control' RMI (PI Jon Belof)
- State of the art experiments and computations
- Machine Learning to predict RMI

Snapshots of density in time increments of $0.1 \mu \mathrm{~s}$ from left to right as an RMI forms.

Various Impact experiments to design for RMI

- Seeking designs that maximize RMI
- Also attempting to mitigate known RMI

Simulated RMI at the same impact velocity

Changing impact materials and initial amplitude

DB: singlewave results Cycle: 0 Time:0

How well do simulations agree with experiments?

- HEAF gas gun experiments
- 9cm diameter
- Hector Lorenzana, Jeff Nguyen, Mike Armstrong

Comparison with sinusoidal wave.

Previous work to model Rayleigh-Taylor instability

- Generator portion of DCGAN model [4]
- Fake celebrity faces
- Trained in Regression
- Not using GAN or Auto Encoder
- Thomas Stitt and Dan White
- Prediction of Rayleigh-Taylor instability
- 2 parameter input
-128×128 'images'

$$
\text { - } 120 \times 1<0 \text { Images }
$$

Fake celebrity images from
https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html
Left MARBL Simulation, Right ML prediction

A parameterized simulation to study RMI

- 3 parameters to change
- Changes impactor side front

$$
x=B \cos \left(\frac{2 \pi Q y}{9}-s \pi\right)
$$

Merlin
Anscent

Machine learning model overview

- Model predicts full RMI formation
- Input: Initial conditions
- Output: Full field response
- Why do this?
- Use ML model to quickly explore designs
- Optimization on the ML model is fast

Entire time dependent density field prediction

Machine learning dataset at a glance

- For the three parameter study
- 1,600 simulations
- 30 hours with 20 Lassen/Sierra nodes
- 51 times steps per simulation
- 5 output fields
- Density
- Velocity X \& Y
- Energy
- Materials
- 1024×1024 "pixels"
- 427,819,008,000 single precision floats
- Larger studies in the works

12G	dataset_000.h5
12G	dataset_001.h5
12G	dataset_002.h5
dataset_003.h5	
12G	dataset_004.h5
12G	dataset_005.h5
12G	dataset_006.h5
12G	dataset_007.h5
12G	dataset_008.h5
12G	dataset_009.h5
dataset_010.h5	
12G	dataset_011.h5
12G	dataset_012.h5 dataset_013.h5 12G 12G
dataset_014.h5	
11G	dataset_015.h5 dataset_016.h5 11G
11G	dataset_017.h5 dataset_018.h5
11G	dataset_019.h5
11G	dataset_020.h5

- More parameters
- More complicated physics

143-12 GB h5 files

The ML model in this work

See 'Generator’ model from DCGAN [4]

Trainable parameters: 15,407,040

What's the input?

3 Parameters + Simulation time
 $[B, Q, S, t]$

Layer by layer progression

Input and Output

Density and Velocity at time $=\mathrm{t}$

$2 \times 1024 \times 1024$

Distributed data model training paradigm

- Dataset split among multiple nodes
- Each GPU
- receives unique fraction of dataset
- Duplicate copy of model and optimizer
- MPI syncs model and optimizer states
- GPU memory limited
- Can only generate N number of $2 \times 1024 \times 1024$ 'images' at a time
- More GPUs -> faster training and inference throughput

Best left-out 'test' simulation comparison

Worst left-out 'test' simulation comparison

More pixels gave us much more detail but significantly increase computation demand

Data compression of the ML model

- 1626 simulations
- 171 billion floats
- Exported model is 178 MB
- 4,000 to 1 compression
- Brings data visualization from HPC world to laptop world
- With losses to accuracy/detail

Dataset

Training Data: 1461 Sims Test Data: 165 Sims
2 fields: Density and Velocity

Total Floats: 171,127,934,904
Size: 685 GB

ML Model

Using the ML model to do an inverse analysis

- Use ML model to find $[B, Q, S]$ that give us the time profile on the right
- Ignore whitespace
- No perfect solution, I drew this by hand and code

I want to find this at $t=7$ within my simulation domain

Formulate an optimization problem

- Find \mathbf{X} that minimizes
$\mathrm{MSE}=\frac{1}{n} \sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}$
- $\mathbf{X}=[B, Q, S]$
- These are the input parameters to the ML model!
- L-BFGS-B (scipy) on ML model
- Derivatives available from ML model!

Inverse optimization results

- Optima from 100 runs shown on right
- Lots of local minima shown in histogram
- Single optimization could run on a laptop
- 1 minute for 120 function evaluations
- CPU only

Goal to find \mathbf{X} that
produces this
X = [0.162, 24.9, 2.08]
Prediction from ML

instability at t=7

Optimization result

Full ML prediction of inverse optimization

Optimization result

How can you trust your ML model's predictions?

- Trying to use first principles to infer the accuracy of our predictions
- These metrics can be calculated without running a simulation
- Simulations are all closed domain, so these equations should be preserved

How can you trust your ML model's predictions?

- Trying to use first principles to infer the accuracy of our predictions
- These metrics can be calculated without running a simulation
- Simulations are all closed domain, so these equations should be preserved
- Continuity Equation

$$
-\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \boldsymbol{u})=0
$$

- Conservation of Mass
- Variance of Mass
- $M(t)=\frac{1}{n} \sum_{i}^{n} \rho_{i}(t) \quad \operatorname{Var}(M(t))=\frac{1}{n_{t}} \sum_{i}^{n_{t}}\left(M(i)-\mu_{m}\right)^{2}$
- Rate of change of Mass
- $M(t)=\frac{1}{n} \sum_{i}^{n} \rho_{i}(t) \quad \frac{d M(t)}{d t}=0$
- Conservation of Momentum
- Variance of Momentum

$$
\text { - } M_{x}(t)=\frac{1}{n} \sum_{i}^{n} \rho_{i} v_{i}^{x} \quad \operatorname{Var}\left(M_{x}(t)\right)=\frac{1}{n_{t}} \sum_{i}^{n_{t}}\left(M_{x}(i)-\mu_{m}\right)^{2}
$$

- Rate of change of Momentum

$$
\text { - } M_{x}(t)=\frac{1}{n} \sum_{i}^{n} \rho_{i} v_{i}^{x} \quad \frac{d M_{x}(t)}{d t}=0
$$

Momentum conservation vs L1 error at 'early' epoch

- A model with random shows strong correlation
- This is a 'reasonable' ml model that shows strong correlation!
- As model training continues, sometimes these correlations get worse
- Active research in progress

Correlation value: 0.77

Conclusions

- ML modeling of RMI from MARBL simulations
- ML model allows for quick visualization of a design space
- ML models can be 'run backwards' and inverted
- Demonstrated ML model to interpolate between simulations
- This is just another tool to further our understanding of complicated physics phenomena
- Dataset generation
- 1,600 simulations
- 600 Node hours (Lassen/Sierra)
- ML model training
- 40 GPUs
- 85 Node hours (Lassen/Sierra)
- ML model vs MARBL sims
- 1,000 times faster
- 4,000 to 1 data compression
- Derivative information

References

1. Zylstra, A.B., Hurricane, O.A., Callahan, D.A. et al. Burning plasma achieved in inertial fusion. Nature 601, 542-548 (2022). https://doi.org/10.1038/s41586-021-04281-w
2. Park HS, Lorenz KT, Cavallo RM, Pollaine SM, Prisbrey ST, Rudd RE, Becker RC, Bernier JV, Remington BA. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate. Physical review letters. 2010 Apr 2;104(13):135504.
3. T.R. Desjardins, C.A. Di Stefano, T. Day, et al. A platform for thin-layer Richtmyer-Meshkov at OMEGA and the NIF, High Energy Density Physics, Volume 33, 2019, 100705, ISSN 1574-1818, https://doi.org/10.1016/j.hedp.2019.100705
4. Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434, 2015.
5. Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations." Journal of Computational Physics 378 (2019): 686-707.
mpled, or assumes any legal iiabiity or responsibiitty for the accuracy, completeness, or usefuiness of any information, apparatus, commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or mply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. he views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

The 'Generator' of the DCGAN from [4] used in this work

```
=============================================================================================
Layer (type:depth-idx)
Output Shape
Param #
```

```
Generator
```

Generator
Sequential: 1
Sequential: 1
L_Identity: 2-1
L_Identity: 2-1
L-ConvTranspose2dMod: 2-2
L-ConvTranspose2dMod: 2-2
L-ConvTranspose2dMod: 2-5
L-ConvTranspose2dMod: 2-5
L-ConvTranspose2dMod: 2-8
L-ConvTranspose2dMod: 2-8
LConvTranspose2dMod: 2-11
LConvTranspose2dMod: 2-11
LConvTranspose2dMod: 2-14
LConvTranspose2dMod: 2-14
L-ConvTranspose2dMod: 2-17
L-ConvTranspose2dMod: 2-17
LConvTranspose2dMod: 2-20
LConvTranspose2dMod: 2-20
L_ConvTranspose2dMod: 2-23
L_ConvTranspose2dMod: 2-23
L-ConvTranspose2d: 2-26
L-ConvTranspose2d: 2-26
[30, 4, 1, 1]
[30, 4, 1, 1]
[30, 512, 4, 4]
[30, 512, 4, 4]
33,792
33,792
[30, 512, 8, 8] 4,195,328
[30, 512, 8, 8] 4,195,328
[30, 512, 16, 16] 4,195,328
[30, 512, 16, 16] 4,195,328
[30, 512, 32, 32] 4,195,328
[30, 512, 32, 32] 4,195,328
[30, 256, 64, 64] 2,097,664
[30, 256, 64, 64] 2,097,664
[30, 128, 128, 128] 524,544
[30, 128, 128, 128] 524,544
[30, 64, 256, 256] 131,200
[30, 64, 256, 256] 131,200
[30, 32, 512, 512] 32,832
[30, 32, 512, 512] 32,832
[30, 2, 1024, 1024] 1,024
[30, 2, 1024, 1024] 1,024
[30, 2, 1024, 1024] --

```
    [30, 2, 1024, 1024] --
```


What's the input?

====================
Layer (type: depth-idx
====================
Generator
-Sequential: 1
LIdentity: 2-1
-ConvTranspose2dMod: 2-2
-ConvTranspose2dMod: 2-5
-ConvTranspose2dMod: 2-8
-ConvTranspose2dMod: 2-11
-ConvTranspose2dMod: 2-14
-ConvTranspose2dMod: 2-17
-ConvTranspose2dMod: 2-20
-ConvTranspose2dMod: 2-23
-ConvTranspose2d: 2-26
-Tanh: 1-3

Batch Size

Layer by layer progression

What is "ConvTranspose2dMod"

```
===========================================
Layer (type:depth-idx)
===========================================
ConvTranspose2dMod
-Sequential: 1
    —Identity: 2-1
    \measuredangleConvTranspose2d: 2-2
    டBatchNorm2d: 2-3
    டReLU: 2-4
```

Just a standard ConvTranspose2d with Batch Norm and activation layer!

Training the model from scratch

- 40 GPUs in total
- 10 Lassen Nodes
- 8.5 hours for 500 epochs
- Minimize Mean Absolute Error (MAE)
- Showing MSE and L-infinity as well
- Test / Train split
- 165 simulations / 1461 simulations
- Adam learning rate of 1e-3

—— Train MAE
__ Test MAE
_ Train MSE
__ Test MSE
$\begin{array}{ll}\text { _-_ } & \text { Train } \mathrm{L}_{\infty} \\ \text { Test } \mathrm{L}^{\infty}\end{array}$

Objective Function

Correlations between first principles and L1 error 'early' epoch

Correlations between first principles and L1 error at 'final' epoch

What to make of the physics based error indicators?

- Simple physics based errors can be used to infer ML accuracy
- ML Momentum violations do correlate to ML accuracy
- Other metrics show promise too
- Included some in loss function for PINN [5] ML model
- Makes the training very difficult
- Unclear how to balance equations
- Very much active research in progress
- Believe this can have profound impacts in our field

