Learning Richtmyer-Meshkov Instability Fields from Parametrized Hydrodynamic Simulations

JOWOG 34 ACS

Charles F. Jekel, Dane M. Sterbentz, Sylvie Aubry, Youngsoo Choi, Daniel A. White, Jon L. Belof

This work was supported by the LLNL-LDRD Program under Project No. LDRD 21-SI-006.

February 28 – March 4, 2022

What are Richtmyer-Meshkov or Rayleigh-Taylor instabilities?

- Rayleigh—Taylor instability occurs at an interface of two different densities [2]
 Water suspended above oil
- Richtmyer-Meshkov Instability (RMI) is impulsively accelerated
 - Two substances with different density
 - Some initial small perturbation between materials
 - Shock wave through interface causes large "jet-like" growths
 - Various importance and interest (e.g. ICF at NIF [1] [3])
- The Darkstar SI seeks to 'control' RMI (PI Jon Belof)
 - State of the art experiments and computations
 - Machine Learning to predict RMI

Snapshots of density in time increments of 0.1µs from left to right as an RMI forms.

Various Impact experiments to design for RMI

- Seeking designs that maximize RMI
- Also attempting to mitigate known RMI

EPOXY

Vacuum

3

Simulated RMI at the same impact velocity Changing impact materials and initial amplitude

Lawrence Livermore National Laboratory LLNL-PRES-1049135

How well do simulations agree with experiments?

- HEAF gas gun experiments
 - 9cm diameter
 - Hector Lorenzana, Jeff Nguyen, Mike Armstrong

Comparison with sinusoidal wave.

Previous work to model Rayleigh–Taylor instability

- Generator portion of DCGAN model [4]
 - Fake celebrity faces
 - Trained in Regression
 - Not using GAN or Auto Encoder
 - Thomas Stitt and Dan White
- Prediction of Rayleigh—Taylor instability
 - 2 parameter input
 - 128 x 128 'images'

Fake celebrity images from https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html

Left MARBL Simulation, Right ML prediction

A parameterized simulation to study RMI

- Machine learning ready tools!
 - MARBL
 - ALE Hydrodynamics
 - Ascent
 - Fast ray tracing 'images'
 - Merlin
 - HPC workflow management

Machine learning model overview

- Model predicts full RMI formation
 - Input: Initial conditions
 - **Output**: Full field response

- Why do this?
 - Use ML model to quickly explore designs

600

800

0

200

Optimization on the ML model is fast

3 input parameters defining initial conditions

Machine learning dataset at a glance

 For the three parameter study 1,600 simulations 30 hours with 20 Lassen/Sierra nodes 51 times steps per simulation 5 output fields Density Velocity X & Y Energy Materials 1024 x 1024 "pixels" 427,819,008,000 single precision floats 	12G 12G 12G 12G 12G 12G 12G 12G 12G 12G	dataset_000.h5 dataset_001.h5 dataset_002.h5 dataset_003.h5 dataset_004.h5 dataset_005.h5 dataset_005.h5 dataset_007.h5 dataset_007.h5 dataset_009.h5 dataset_010.h5 dataset_011.h5 dataset_012.h5 dataset_013.h5 dataset_014.h5 dataset_015.h5 dataset_016.h5 dataset_017.h5
 Larger studies in the works — More parameters 	11G 11G 11G	dataset_018.h5 dataset_019.h5 dataset_020.h5

More complicated physics

143 - 12 GB h5 files

The ML model in this work See 'Generator' model from DCGAN [4]

Layer by layer progression

Input and Output

Distributed data model training paradigm

- Dataset split among multiple nodes
- Each GPU
 - receives unique fraction of dataset
 - Duplicate copy of model and optimizer
 - MPI syncs model and optimizer states
- GPU memory limited
 - Can only generate N number of 2x1024x1024 'images' at a time
 - More GPUs -> faster training and inference throughput

Best left-out 'test' simulation comparison

Worst left-out 'test' simulation comparison

More pixels gave us much more detail but significantly increase computation demand

Lawrence Livermore National Laboratory

Data compression of the ML model

- 1626 simulations
- 171 billion floats
- Exported model is 178 MB
- 4,000 to 1 compression
- Brings data visualization from HPC world to laptop world
- With losses to accuracy/detail

Using the ML model to do an inverse analysis

- Use ML model to find [B, Q,S] that give us the time profile on the right
- Ignore whitespace
- No perfect solution, I drew this by hand and code

I want to find this at t=7 within my simulation domain

Formulate an optimization problem

• Find **X** that minimizes

$$ext{MSE} = rac{1}{n}\sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

- X = [B, Q, S]
 - These are the input parameters to the ML model!
- L-BFGS-B (scipy) on ML model
- Derivatives available from ML model!

Inverse optimization results

- Optima from 100 runs shown on right
- Lots of local minima shown in histogram
- Single optimization could run on a laptop
 - 1 minute for 120 function evaluations
 - CPU only

awrence Livermore National Laboratory

LNL-PRES-1049135

Full ML prediction of inverse optimization

Lawrence Livermore National Laboratory LLNL-PRES-1049135

How can you trust your ML model's predictions?

- Trying to use first principles to infer the accuracy of our predictions
- These metrics can be calculated without running a simulation
- Simulations are all closed domain, so these equations should be preserved

How can you trust your ML model's predictions?

- Trying to use first principles to infer the accuracy of our predictions
- These metrics can be calculated without running a simulation
- Simulations are all closed domain, so these equations should be preserved

• Continuity Equation $\frac{\partial \rho}{\partial r}$

$$-\frac{\partial\rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{u}) = 0$$

- Conservation of Mass
 - Variance of Mass

•
$$M(t) = \frac{1}{n} \sum_{i}^{n} \rho_i(t)$$
 $Var(M(t)) = \frac{1}{n_t} \sum_{i}^{n_t} (M(i) - \mu_m)^2$

•
$$M(t) = \frac{1}{n} \sum_{i}^{n} \rho_i(t)$$
 $\frac{dM(t)}{dt} = 0$

- Conservation of Momentum
 - Variance of Momentum

•
$$M_x(t) = \frac{1}{n} \sum_{i}^{n} \rho_i v_i^x$$
 $Var(M_x(t)) = \frac{1}{n_t} \sum_{i}^{n_t} (M_x(i) - \mu_m)^2$

Rate of change of Momentum

$$M_{x}(t) = \frac{1}{n} \sum_{i}^{n} \rho_{i} v_{i}^{x} \qquad \frac{dM_{x}(t)}{dt} = 0$$

Momentum conservation vs L1 error at 'early' epoch

- A model with random shows strong correlation
- This is a 'reasonable' ml model that shows strong correlation!
- As model training continues, sometimes these correlations get worse
- Active research in progress

Correlation value: 0.77

Conclusions

- ML modeling of RMI from MARBL simulations
- ML model allows for quick visualization of a design space
- ML models can be 'run backwards' and inverted
- Demonstrated ML model to interpolate between simulations
- This is just another tool to further our understanding of complicated physics phenomena

- Dataset generation
 - 1,600 simulations
 - 600 Node hours (Lassen/Sierra)
- ML model training
 - 40 GPUs
 - 85 Node hours (Lassen/Sierra)
- ML model vs MARBL sims
 - 1,000 times faster
 - 4,000 to 1 data compression
 - Derivative information

References

- Zylstra, A.B., Hurricane, O.A., Callahan, D.A. *et al.* Burning plasma achieved in inertial fusion. *Nature* 601, 542–548 (2022). https://doi.org/10.1038/s41586-021-04281-w
- 2. Park HS, Lorenz KT, Cavallo RM, Pollaine SM, Prisbrey ST, Rudd RE, Becker RC, Bernier JV, Remington BA. Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate. Physical review letters. 2010 Apr 2;104(13):135504.
- 3. T.R. Desjardins, C.A. Di Stefano, T. Day, *et al.* A platform for thin-layer Richtmyer-Meshkov at OMEGA and the NIF, *High Energy Density Physics*, Volume 33, 2019, 100705, ISSN 1574-1818, <u>https://doi.org/10.1016/j.hedp.2019.100705</u>
- 4. Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434, 2015.
- 5. Raissi, Maziar, Paris Perdikaris, and George E. Karniadakis. "Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations." Journal of Computational Physics 378 (2019): 686-707.

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

The 'Generator' of the DCGAN from [4] used in this work

<pre>====================================</pre>	Output Shape	Param #
Generator		
-Sequential: 1		
└└─Identity: 2-1	[30, 4, 1, 1]	
ConvTranspose2dMod: 2-2	[30, 512, 4, 4]	33,792
ConvTranspose2dMod: 2-5	[30, 512, 8, 8]	4,195,328
ConvTranspose2dMod: 2-8	[30, 512, 16, 16]	4,195,328
ConvTranspose2dMod: 2-11	[30, 512, 32, 32]	4,195,328
└─ConvTranspose2dMod: 2-14	[30, 256, 64, 64]	2,097,664
ConvTranspose2dMod: 2-17	[30, 128, 128, 128]	524,544
└─ConvTranspose2dMod: 2-20	[30, 64, 256, 256]	131,200
ConvTranspose2dMod: 2-23	[30, 32, 512, 512]	32,832
└─ConvTranspose2d: 2-26	[30, 2, 1024, 1024]	1,024
-Tanh: 1-3	[30, 2, 1024, 1024]	

Trainable parameters: 15,407,040

Total mult-adds: 1.23 (T)

 What's the input? Layer (type:depth-idx)	Batch Size Output Shape	3 Parameters + Simulation time
Generator		[D, Q, J, t]
-Sequential: 1		
Lidentity: 2-1	[30, 4, 1, 1]	
└─ConvTranspose2dMod: 2-2	[30, 512, 4, 4]	33,792
└─ConvTranspose2dMod: 2-5	[30, 512, 8, 8]	4,195,328
ConvTranspose2dMod: 2-8	[30, 512, 16, 16]	4,195,328
└─ConvTranspose2dMod: 2-11	[30, 512, 32, 32]	4,195,328
└─ConvTranspose2dMod: 2-14	[30, 256, 64, 64]	2,097,664
└─ConvTranspose2dMod: 2-17	[30, 128, 128, 128]	524,544
└─ConvTranspose2dMod: 2-20	[30, 64, 256, 256]	131,200
└─ConvTranspose2dMod: 2-23	[30, 32, 512, 512]	32,832
└─ConvTranspose2d: 2-26	[30, 2, 1024, 1024]	1,024
├─Tanh: 1-3	[30, 2, 1024, 1024]	

Layer by layer progression

What is "ConvTranspose2dMod"

```
Layer (type:depth-idx)
ConvTranspose2dMod
 -Sequential: 1
     └─Identity: 2-1
      -ConvTranspose2d: 2-2
     \squareBatchNorm2d: 2-3
      -ReLU: 2-4
```

Just a standard ConvTranspose2d with Batch Norm and activation layer!

Training the model from scratch

Correlations between first principles and L1 error 'early' epoch

Correlations between first principles and L1 error at 'final' epoch

What to make of the physics based error indicators?

- Simple physics based errors can be used to infer ML accuracy
- ML Momentum violations do correlate to ML accuracy
 - Other metrics show promise too
- Included some in loss function for PINN [5] ML model
 - Makes the training very difficult
 - Unclear how to balance equations
- Very much active research in progress
 - Believe this can have profound impacts in our field

