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Linear shaped charges are used to focus energy into rapidly creating a deep linear incision. The general
design of a shaped charge involves detonating a confined mass of high explosive (HE) with a metal-lined
concave cavity on one side to produce a high velocity jet for the purpose of striking and penetrating a given
material target. This jetting effect occurs due to the interaction of the detonation wave with the cavity
geometry, which produces an unstable fluid phenomenon known as the Richtmyer–Meshkov instability and
results in the rapid growth of a long narrow jet. We apply machine learning and optimization methods to
hydrodynamics simulations of linear shaped charges to improve the simulated jet characteristics. The designs
that we propose and investigate in this work generally involve modifying the behavior of the detonation waves
prior to interaction with the liner material. These designs include the placement of multiple detonators and
the use of metal inclusions within the HE. We are able to produce a linear shaped-charge design with a higher
penetration depth than the baseline case that we consider and accomplish this using the same amount of or
less HE.

Keywords: Richtmyer–Meshkov instability, detonation waves, shock waves, shaped charges, optimization,
machine learning

I. INTRODUCTION

Shaped charges are used in a variety of applications
for creating deep incisions or perforations in hard, dense
materials such as stone and metal. Depending on the
intended use, the geometry of a shaped charge can take
several forms including a radially symmetric (e.g., a con-
ical shape) or linear configuration (i.e., with linear pla-
nar symmetry). Linear shaped charges are used to cre-
ate deep linear cuts and have many commercial appli-
cations in industries including mining, oil and gas ex-
traction/transmission, structural demolition, and rocket
systems1–3. As a specific example, a linear shaped charge
can be used to quickly sever oil or natural gas pipelines,
which may be necessary during an emergency scenario4.
Linear shaped charges are also used for rapid stage sepa-
ration in multistage rocket systems for spacecraft launch
vehicles5,6.

Most linear shaped-charge designs involve encasing
some type of high explosive (HE) in a shell of metal or
other material. The casing is open on one side with a
concave cavity cut into the HE material. This cavity is
usually lined with a thin material that we subsequently
refer to as the liner. A detonator (or detonators) is used
to ignite the HE, which produces a detonation wave that
travels through the HE to the liner. When this deto-
nation wave reaches and interacts with the liner, it pro-
duces a Richtmyer–Meshkov instability that manifests as
the liner material in the cavity begins to invert and is
pulled into a narrow high-velocity jet that forms at the
central apex of the liner cavity7–9. This phenomenon is
also sometimes referred to as the Munroe or Neumann
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effect10. Much of the hydrodynamic theory describing
the process of liner jet formation was laid out by Birkhoff
et al.10 and Pugh et al.11, whose work provides an an-
alytical basis for this phenomenon and the penetrative
properties of the jet. For many applications, it is desir-
able for this jet to strike a target (i.e., the material in
which an incision is to be made) and penetrate as deeply
as possible into this target, which is located at some spec-
ified distance from the linear shaped charge.

Work conducted by a number of researchers12–17 has
demonstrated that detonation wave properties can be
modified and controlled to alter jetting and penetration
properties for various types of shaped charges. Our work
investigates several linear shaped charge design param-
eterizations using two-dimensional hydrodynamics simu-
lations and design optimization methods. We use these
design parameterizations to modify properties of the HE
detonation waves prior to interaction with the liner ma-
terial with the goal of altering jet characteristics to in-
crease the penetration depth into a given material tar-
get. We run numerous simulations in parallel on a high
performance computer (HPC) to generate large datasets.
These datasets are then used to train neural network
models for use as a surrogate to aid in iteratively optimiz-
ing the penetrative properties of the jet. In our analysis,
we generally leave the liner angle, thickness, and mate-
rial unchanged, as these properties have been somewhat
extensively studied in previous works18–23.

Our parameterizations include altering the positions of
multiple detonators and the addition of metal inclusions
within the HE. We provide justification for the selection
of these design parameterizations using analytical expres-
sions that describe the dynamics of detonation wave in-
teractions, such as the pressure increase from the colli-
sion of detonation waves13,24,25. Due to the high com-
putational time cost of simulating the penetration of a
jet into a target, we also investigate potential optimiza-
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tion metrics that correlate to penetration depth10,26, but
do not require us to fully simulate the penetration of
the jet into a target. This is particularly useful for our
optimization analysis that involves conducting numerous
hydrodynamics simulations. From our analysis, we pro-
duce several optimized linear shaped-charge designs with
a higher penetration depth than the baseline case and,
in some cases, accomplish this using less HE.

II. METHODOLOGY

A. Hydrodynamics simulation setup

The configuration, including dimensions, of our two-
dimensional hydrodynamics simulation for the baseline
case that we compare to our optimized designs is shown
in Figure 1. Our two-dimensional simulation configura-
tion has linear planar symmetry boundary conditions and
extends infinitely in the z-direction out of the page. The
linear shaped charge in this configuration consists of HE
surrounded by a stainless steel casing. On the open side
of the HE, an angled cavity protrudes into the HE and is
lined with copper. The liner angle that we use for most
of our simulations is α = 60◦. In front of the liner, we use
air at ambient conditions (i.e., atmospheric pressure and
room temperature). A single detonator is placed near the
back of the HE region, which is used to initiate the deto-
nation wave that strikes the copper liner. Note that the
air region extends further than what is shown in Figure 1
and the total length of the simulation in the x-direction
is equal to 10 cm.

FIG. 1: The linear shaped-charge configuration that we
use in our simulations for the baseline case. The
materials used and their corresponding locations and
dimensions are marked on the diagram. This
configuration involves linear planar symmetry and
extends infinitely in the z-direction (i.e., out of the
page).

We construct these simulations using the MARBL
hydrodynamics code27,28. MARBL is an arbitrary
Lagrangian–Eulerian code that uses a high-order finite
element method to solve the conservation of mass, mo-
mentum, and energy equations29. Our simulation mesh
has approximately 10,600 elements, with higher mesh re-

finement in the HE and liner region and along the path
of the jet. These elements are quadratic for kinematic
fields and piecewise-discontinuous linear for thermody-
namic fields. Our simulations also output a density and
a velocity field image on a fixed Cartesian grid at equally
spaced time steps throughout the simulation using the
Ascent software library30. We use these Ascent images
to calculate the fitness metric for our optimization anal-
ysis, which is described further in Section II C.

The materials in our simulations are modeled using the
Livermore Equation of State (LEOS) library. The mate-
rial equations of state for copper, stainless steel, and air,
come from LEOS tables 29031, 3010, and 2260, respec-
tively. They are based on the quotidian equation of state
with extension formalism32,33. For the copper and stain-
less steel in our simulations, we use the Steinberg–Guinan
strength model34. For the copper strength model, we use
a shear modulus of 0.477 Mbar, an initial yield stress
of 1.2 × 10−3 Mbar, and a maximum work hardening
stress of 6.4×10−3 Mbar. Similarly, for the stainless steel
strength model, we use a shear modulus of 0.770 Mbar,
an initial yield stress of 3.3×10−3 Mbar, and a maximum
work hardening stress of 2.5 × 10−3 Mbar. To simulate
the detonation and combustion dynamics of the HE, we
use a reactive flow model35–37, which has the ability to
account for a broad range of detonation and shock phe-
nomena not captured by programmed burn models38,39.
We neglect the strength of the unreacted HE in our sim-
ulations.

B. Jet formation dynamics

The unstable fluid motion that occurs when a shock or
detonation wave interacts with an interface between two
materials is known as the Richtmyer–Meshkov instabil-
ity (RMI) and often results in high-velocity jetting when
the interface includes a cavity, groove, or other non-flat
perturbation7–9. This jetting behavior is sometimes re-
ferred to as the Munroe effect when it occurs in shaped-
charge applications. Although the liner is a solid material
(e.g., copper), the high stresses in shaped-charge detona-
tions tend to exceed the yield stress of the liner material,
which implies that the liner jet formation can largely be
approximated using fluid mechanics. The following equa-
tion provides a simple relation that describes the veloc-
ity at an RMI jet tip for scenarios where the materials
involved can be approximated as fluids and the pertur-
bation at the interface is approximately sinusoidal7,8:

vj = kη0A∆up, (1)

where k is the wave number of the perturbation, η0 is the
initial amplitude of the perturbation, ∆up is the jump
in the particle velocity caused by the shock wave that
strikes the perturbation (i.e., the shock wave that inter-
acts with the liner–air interface in shaped-charge appli-
cations), and A is the Atwood number. When solid ma-
terials are involved, such as the case that we investigate
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in this work, material elasticity and strength may also
need to be considered. However, Equation (1) provides a
general idea of what factors are important in producing
a high-velocity jet.

The Atwood number A in Equation (1) plays a signif-
icant role in the behavior at the interface and is equal
to

A =
ρ2 − ρ1
ρ2 + ρ1

, (2)

where ρ1 is the density of the upstream material (i.e., the
liner material) and ρ2 is the density of the downstream
material (i.e., the air in front of the liner). For cases
where A < 0, the liner cavity undergoes an inversion or
collapse as the RMI jet begins to form. The original liner
configuration (prior to being struck by the detonation
wave) is shown in Figure 2(a). After the detonation wave
strikes the liner, it induces RMI in the liner cavity which
leads to the collapse or inversion of the liner as seen in
Figure 2(b). Eventually the liner material will be entirely
pulled into a high-velocity jet as shown in Figure 2(c).
For the results that we show in this paper, we focus on the
area within the rectangle shown in Figure 2(d), but we
do account for the volume expansion that occurs around
the HE region after the HE is detonated. Note that the
color scales for all density and pressure plots in this paper
are shown in Figure 3(a) and (b), respectively.

The work of Birkhoff et al.10 was among the first to
provide a strong analytical foundation for the fluid me-
chanics of the collapse of the liner and formation of the
high-velocity jet. According to Birkhoff et al., a deto-
nation wave with velocity ud strikes the liner (with an
original liner angle of α) and causes the liner to collapse
(or invert slightly) to a new angle β where β > α (see
Figure 4). Note that β is somewhat difficult to determine
analytically because it depends on a number of factors in-
cluding liner thickness, the liner angle α, the detonation
wave velocity ud, the angle from the vertical at which
the detonation wave strikes the liner ω, etc. Vorticity
deposition from the detonation wave and the collapse of
the liner also causes the liner material to be pushed to-
wards the central axis with a velocity of v0, where it is
expelled as both a jet with velocity vj and a more slowly
moving slug with velocity vs

10,11,40. Note that both vj
and vs are in the same direction, but vj is generally much
greater than vs. From the Birkhoff et al.10,11 derivation,
an approximation for the jet velocity vj is given by

vj = v0 csc

(
β

2

)
cos

(
α− β

2
+ δ

)
, (3)

and an approximation for the slug velocity vs is given by

vs = v0 sec

(
β

2

)
sin

(
α− β

2
+ δ

)
, (4)

where v0 is the liner collapse velocity, which can be com-
puted using

v0 =
2ud

cos(ω + α)
sin(δ), ω + α ≤ π

2
. (5)

(a)

(b)

(c)

(d)

FIG. 2: Density plots for the baseline shaped-charge
configuration that we consider in this study are shown
at several time instants ∆t after the HE detonator is
ignited: (a) prior to detonation wave interaction with
liner, ∆t = 0.3 µs; (b) as liner begins to invert or
collapse, ∆t = 5.0 µs; (c) after jet has fully formed,
∆t = 20.0 µs; (d) zoomed out showing volume
expansion due to detonation of HE (area of interest is
within black rectangle), ∆t = 20.0 µs.

In Equation (5), ω is the angle of the detonation wave
relative to the vertical and δ is the angle from the line
normal to the liner angle along which a section of the
liner moves. Note that ud/ cos(ω+α) corresponds to the
velocity at which the detonation wave sweeps along par-
allel to the liner and reduces to the equation in Pugh et
al.11 when ω = 0. According to the steady-state deriva-
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(a) (b)

FIG. 3: The color scales that we use for density and
pressure plots in this paper: (a) density [g/cm3]; (b)
pressure [Mbar].

tion given by Birkhoff et al., the angle δ is simply equal
to

δ =
β − α

2
, (6)

where the liner collapse angle β is held constant. For the
steady-state case, Equation (6) can be substituted into
Equations (7) and (8) to obtain

vj = v0 csc

(
β

2

)
cos

(
α

2

)
, (7)

vs = v0 sec

(
β

2

)
sin

(
α

2

)
. (8)

Birkhoff et al. also derive an approximation for the
amount of mass deposited in the jet as a function of the
angle β that is equal to

mj =
m

2
[1− cos(β)], (9)

and for the slug is equal to

ms =
m

2
[1 + cos(β)], (10)

where m is the total mass of the liner. These relations
predict that, for the limiting case where the detonation
wave strikes the liner at a normal angle (i.e., ω = π/2−
α), the collapse angle β = α and the jet velocity vj can be
continually increased as the liner angle goes to zero (i.e.,
as β = α→ 0)10. However, from Equation (9), it is clear
that the mass of the jet mj also approaches zero as β →
0. This means that properties such as jet momentum
and kinetic energy will not necessarily be increased as
β = α→ 0. This type of tradeoff between jet velocity vj
and jet mass mj is a major challenge in shaped-charge
design and optimization, where it is generally desirable
for both of these quantities to be as high as possible.

While the analysis of Birkhoff et al. provides an excel-
lent basis for understanding shaped-charge jet formation,
it does overlook some important aspects of this process.
For instance, the work of Pugh et al.11 provides addi-
tional analysis on shaped-charge jet formation, such as

(a)

(b)

FIG. 4: These diagrams show the process of liner
collapse as the detonation wave sweeps along the liner
from the apex to the base. As time increases, the
detonation wave moves from an arbitrary Point (1) to
Point (2) as marked in the diagrams and the liner
collapses from the original liner angle α to the liner
collapse angle β. Several other variables involved in the
analysis provided in the text are also marked on these
diagrams including the detonation wave velocity ud,
collapse velocity v0, the detonation wave angle ω, and
the collapse velocity angle δ: (a) as the detonation wave
passes through Point (1), the liner collapses and a
velocity v0 is imparted to the liner at Point (1) as
described by Birkhoff et al.10; (b) the detonation wave
continues to sweep along the liner and reaches Point
(2). When the detonation wave reaches Point (2), Point
(1) has moved to Point (1’) where the liner mass at
Point (1) is redirected horizontally into the jet.

accounting for variable collapse velocity v0, to explain
the large discrepancies between the Birkhoff et al. formu-
lation and the jet length observed in experiments. The
variable collapse velocity v0 proposed by Pugh et al. im-
plies that the collapse angle β (and consequently the an-
gle δ) does not remain constant as the detonation wave
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FIG. 5: For the idealized case in Figure 4(b), the liner
collapse angle β remains constant. However, for most
physical cases, the collapse velocity v0 will vary along
the length of the liner as collapse occurs, as described
by Pugh et al.11. A variable collapse velocity v0
consequently implies that the collapse angle β and
collapse velocity angle δ will also vary. The diagram
depicts the more physical case involving a variable

collapse angle β̂.

propagates from the liner apex to the liner base (i.e., the
points where the liner contacts the outer casing). Ac-
cording to Pugh et al., even a small gradient or variation
in the collapse velocity v0 can produce a large gradient
in the jet velocity vj . This suggests that an optimal det-
onation wave angle ω may also change over time as the
detonation wave sweeps along the liner from the apex to
the base. Figure 5 shows an example of how β may vary
as the detonation wave moves along the liner from apex
to base.

This analytical theory provides an incentive for investi-
gating different detonation wave front profiles where the
angle ω can be varied along the detonation wave front,
which allows us to find an optimal wave front for opti-
mizing a penetration metric. While these analytical rela-
tions provide a reasonable starting point for understand-
ing shaped-charge jet formation, hydrodynamics simula-
tions are often needed to fully capture the flow dynamics
present in the formation of the jet and slug. In the fol-
lowing sections, we describe our methodology for altering
and shaping the detonation wave front with the objective
of optimizing a fitness metric related to jet penetration
depth into a target.

C. Optimization fitness metric

The ultimate goal of our optimization analysis is to in-
crease the penetrative properties of the jet. While we can
directly simulate the penetration of the shaped-charge jet
into a target, this is computationally inefficient when run-
ning numerous simulations, such as for our optimization

analysis. Therefore, a correlation between penetration
depth and a fitness metric based on more easily com-
putable jet characteristics (e.g., jet velocity and density)
is of great value. A fitness metric based on jet charac-
teristics also allows us to use optimization methods to
investigate how different designs influence these charac-
teristics. A well-known analytical relation for predict-
ing the penetration depth of the RMI jet was proposed
by Birkhoff et al.10 Several other empirical and analyti-
cal relations for predicting penetration depth, as well as
other damage metrics, have also been proposed26,41,42.
We start by considering the penetration depth relation
proposed by Birkhoff et al.10

The relation proposed by Birkhoff et al. assumes a sta-
tionary reference frame moving at the penetration veloc-
ity U [i.e., the velocity at which the jet is penetrating
into the target, see Figure 6(b)]. They also assume that
the system reaches steady state instantaneously. Using
these assumptions, Bernoulli’s equation can be applied
to obtain

1

2
ρj(vj − U)2 =

1

2
ρtU

2, (11)

where vj is the jet velocity, ρj is the density of the jet,
and ρt is the density of the target (see diagrams in Figure
6). Note that for the analysis in this section, we will no
longer distinguish between jet and slug, but will simply
refer to the entire mass (both slug and jet) as the jet,
which has density ρj and velocity vj . After some minor
algebraic manipulation and assuming that the time it
takes for penetration to occur is equal to td = L/(vj−U)
where L is the total length of the jet mass (including
the slug), the penetration depth d when the jet mass has
fully struck the target is equal to

d = Utd = L

√
ρj
ρt
. (12)

This relation implies that the penetration depth is not
directly a function of the jet velocity vj , but is instead
dependent on the length of the jet mass L. For a variable
density jet ρj(x), Equation (12) can be rewritten as

d =
1√
ρt

∫ L

0

√
ρj(x)dx, (13)

where an integration is performed over the length of the
jet. Since we are primarily interested in increasing the
penetration depth regardless of the target material, we
can remove ρt from the equation to obtain the following
metric

Φ1 =

∫ L

0

√
ρj(x)dx. (14)

If we also consider the fact that the jet density is not con-
stant in the y-direction, we can include a second integral,
such that

Φ1 =

∫ a

−a

∫ L

0

√
ρj(x, y)dxdy, (15)
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where −a and a are the bounds on the body of the jet in
the y-direction. For our results, we simply set a ≈ 0.1 cm.
Alternatively, we found the following fitness metric to
correlate more directly to the penetration depth in our
simulations:

Φ2 =

∫ a

−a

∫ L

0

√
ρj(x, y)vj(x, y)dxdy, (16)

where we have essentially just inserted the jet velocity vj
into the integral of Equation (15). The metric in Equa-
tion (16) has a kinetic energy analog given by

Φ3 =
1

2

∫ a

−a

∫ L

0

ρj(x, y)vj(x, y)2dxdy, (17)

which correlates similarly to penetrative properties.
However, we focus on the metric of Equation (16) in our
optimization analysis.

(a)

(b)

FIG. 6: The shaped-charge jet can be approximated as
a rod with density ρj and velocity vj . When the jet
strikes a target with density ρt, the jet penetrates into
the target with a new velocity U up to a depth d. The
diagrams in this figure show this process at two times:
(a) just prior to the jet striking a target; (b) after the
jet has penetrated a distance d into the target.

To assess these fitness metrics using our simulations,
we include a tungsten target at a distance of 5.0 cm from
the liner and use a parameterization in an array of sim-
ulations to vary the jet properties such that we obtain a
variety of penetration depths. We use a tungsten target
over other lower-density materials (e.g., steel) to reduce
the time required for the jet to fully penetrate into the
target and consequently reduce the time required to run
these simulations. We then compute Φ1 and Φ2 for each
simulation at a time just before the jet strikes the target.

We calculate these fitness metrics using images provid-
ing velocity and density fields that are output from our
simulations using the Ascent software library30, which
are output at equally spaced time steps. The correlation
between penetration depth into the target and the fit-
ness metrics Φ1 and Φ2 are plotted in Figure 7(a) and
(b), respectively. As can be seen in Figure 7, the fitness
metric Φ2 correlates much more strongly with penetra-
tion depth. The fitness metric Φ1 may simply not be
accurate enough for the shaped charge scenario that we
consider. Therefore, for our optimization analysis, we
compute Φ2 as our fitness metric in place of simulating
the penetration of the jet into a target. We also use the
maximum value of the fitness metric over all time steps.
While the stand-off distance between the liner and the
target is an important parameter for determining pene-
tration depth of a given jet, we are more concerned with
finding the most penetrative jet at any stand-off distance
occurring at any time throughout our simulation for our
optimization analysis.

D. Optimization methodology

The fitness metrics Φ1, Φ2, and Φ3 clearly depend upon
the physics fields vj(x, y) and ρj(x, y) evaluated at some
physical time instant ∆t. In addition, the physics state
depends upon the initial design parameters, here defined
as n independent scalar parameters z ∈ Z = [0, 1]

n ⊂ Rn.
Thus, the fitness metrics are functions of the vector z,
and the design optimization problem is to find the best
value of z given by

max
z∈Z

Φ(z), (18)

where we set Φ = Φ2 for our analysis. We do not presume
that the problem is convex, there can be multiple local
maxima, therefore this is a global optimization problem.
We do not have need for arbitrary constraints, as any
manufacturing constraints are embedded into the design
parameterization (discussed in section Section II E) be-
low, hence this is an unconstrained global optimization
problem. Note that, due to the nature of the physics sim-
ulation code MARBL that is used to perform the hydro-
dynamics simulations, derivative information dΦ(z)/dz
is not available. A lack of gradient information is not
unique to MARBL, but is true of most hydrodynamics
(and most multiphysics) codes. Code development for
ALE hydrodynamics that provides gradient information
is currently an open field of research. Therefore, we em-
ploy gradient-free (or “black-box”) methods to solve this
problem.

While there exists a great variety of gradient-free op-
timization methods, we employ a surrogate model based
approach where the surrogate fitness metric is denoted by
Φ̂(z). This approach is data-driven, needing no informa-
tion other than values of Φ(z) evaluated at selected sam-
ple points in Z, but it results in a continuous approximate
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FIG. 7: Correlation between penetration depth into a
tungsten target and two fitness metrics that we
investigated in our study: (a) fitness metric Φ1 given by
Equation (15); (b) fitness metric Φ2 given by Equation
(16).

model that is useful for sensitivity analysis. Some excel-
lent review articles on gradient-free optimization include
those of Vu43, Jones44, Koziel45, and Stork46. In order of
increasing complexity, surrogate-based optimization may
be based on polynomials, radial basis function interpo-
lation, Gaussian process regression (a.k.a. Kriging), or
artificial neural networks (ANN)47. The ANN approach
is applied here, specifically a two hidden layer fully con-
nected network using Gaussian activation functions48.
The training can be done iteratively and the i-th iter-
ation of the algorithm proceeds through the following
general steps:

1. Define the sample domain Zi

2. Generate ki sample points in Zi

3. Perform ki hydrodynamics simulations

4. Compute ki fitness metrics

5. Train ANN to learn the fitness metric as a function
of the design variables to create surrogate model(
z, Φ̂(z)

)
6. Use limited-memory Broyden–Fletcher–Goldfarb–

Shanno (LBFGS) repeatedly from random starting

points to find all the local maxima of Φ̂(z)

In this algorithm, convergence is defined as when the
predicted optimal value of Φ̂(z) agrees with the actual
value of Φ(z) to within some tolerance (e.g., 5%).

It should be noted that in the literature many gradient-
free optimization methods employ a combination of ex-
ploration (or diversification) and exploitation (or inten-
sification). The approach described above is heavily
weighted towards exploitation meaning that most ran-
dom exploration is performed during the initial sampling
and little subsequent random sampling is performed. As
an example, for three design variables the initial explo-
ration may consist of 35 = 243 initial samples (we gen-
erally round this up to 300 samples), which is presumed
to be a high enough sample density to have one sample
in the neighborhood of the global optimum. Subsequent
iterations then refine only the most promising regions of
design space.

We perform the sampling in Step (1) using a tradi-
tional Latin hypercube. A traditional Latin hypercube
is an n-dimensional sampling with two key properties:
1) a quasi-uniform space filling (no unusually large gaps
between the samples); 2) non-collapsed, meaning that no
coordinate is replicated. Latin hypercube samples are
not unique, and finding the “best” set of samples can
be a complicated optimization problem in itself. How-
ever, a traditional Latin hypercube gives us a reasonable
sampling spread throughout much of the sample domain.

The hydrodynamics simulations performed in Step (3)
can be performed in parallel. A scalable asynchronous
task scheduler Merlin49 is used to manage the workflow.
This workflow scheduler runs all of the physics simula-
tions, including the separate tasks of mesh generation,
hydrodynamics, and the fitness metric post processing of
Step (4). The machine learning in Step (5) utilizes the
Pytorch library50. We use a fully connected two hidden
layer network with Gaussian activation functions and 50
to 100 nodes for each hidden layer.

In Step (5) of the above algorithm, the well-known
LBFGS algorithm is used to find all of the local maxima
of the ANN model. The LBFGS algorithm is a quasi-
Newton method, requiring gradients but not Hessians.
The gradient of the model is easily computed using the
built-in automatic differentiation capability of Pytorch.
This method of course converges to a local maximum,
and our goal is to find the global optimum. It is a sim-
ple matter to execute the LBFGS algorithm over and over
again with O(105) different starting points in the domain
Z. It must be noted that while a single hydrodynamics
simulation may require 8 CPU hours, evaluation of the
ANN model only requires approximately 0.1 seconds, so
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this is not an expensive proposition. While no statisti-
cal proof is provided, it was observed that this approach
found between 3 and 10 distinct local maximum thus the
ANN model does not suffer from extreme oscillations and
the global optimum of the ANN model is indeed found.

The above algorithm can be repeated multiple times
where new samples are generated in a refined (or nar-
rowed) sample domain within some fraction of the origi-
nal domain centered at the global optimum found in the
previous iteration (e.g., within ±5%). However, we found
that a single iteration followed by further simulations
run within a refined sample domain (within ±5%) was
generally sufficient for our purposes. For a study with
three design parameters, we typically use 300 hydrody-
namics simulations in the first iteration and 100 further
simulations in the refined sample domain. Each of our
two-dimensional hydrodynamics simulations can be run
in less than an hour on a single GPU (NVIDIA V100 on
the Lassen HPC51). This constitutes the optimization
methodology that we use. We apply this methodology to
the design parameterizations described in the following
section.

E. Design parameterizations

For our analysis, we investigate many different design
parameterizations. However, for brevity, we will only fo-
cus on a few of the best performing parameterizations.
The design parameterizations that we consider include
altering the position of one or more detonators within
the HE region, altering the time delay between the igni-
tion of multiple detonators, and the addition of a metal
inclusion (we use Cu for this purpose) within the HE
region. When the HE detonation wave strikes the inclu-
sion, it produces a shock wave that travels through the
inclusion at a slower shock velocity us than the detona-
tion wave velocity ud. These parameterizations allow us
to tune the detonation wave front to some degree and
even split the detonation wave into multiple portions to
induce detonation wave collisions.

The diagrams in Figure 8 show several sample designs
that we investigate in our study. The parameterization
in Figure 8(a) involves using three detonators, where two
detonators are symmetrically placed about the central
axis in the HE region and a third detonator is varied
along the central axis in the x-direction. Figure 8(b)
shows a parameterization that also involves three detona-
tors, but introduces a time delay between the detonator
on the central axis and the symmetric detonators (repre-
sented by different detonation wave radii in the diagram).
The two symmetric detonators can be varied only along
the stainless steel casing and the central detonator fixed
near the edge of the casing. In this parameterization,
either the two symmetric detonators or the central deto-
nator can detonate first. The parameterization of Figure
8(c) involves using a copper inclusion in a triangular or
chevron shape. As shown in the diagram, the dimensions

of the inclusion are varied, but symmetry about the cen-
tral axis is maintained.

(a)

(b)

(c)

FIG. 8: Several samples of design parameterizations
that we considered in our investigation; (a) three
detonator design (detonators are ignited at the same
time instant); (b) three detonator design where time
delay is introduced between the ignition of the two
symmetric detonators and ignition of the central
detonator (either the two symmetric detonators or the
central detonators can ignite first); (c) copper inclusion
design in the shape of a chevron (note that this
inclusion can take on a chevron, triangular, or diamond
shape).

As previously mentioned, the design parameterizations
that we have chosen allow us to modify the properties
and shape of the detonation wave (or waves) that strike
the copper liner. One phenomenon of particular inter-
est is the localized increase in pressure that occurs due
to collisions between detonation waves and whether this
localized pressure increase is able to significantly affect
properties of the resulting jet. The work of Zhang et
al.25 demonstrates that the locations of detonation wave
collisions can be used to predict where fractures form
along a steel plate coupled to HE with an array of deto-
nators. Liu et al.13 have also investigated the collision of
detonation waves in relation to shaped charges applica-
tions. The maximum pressure in the collision region P2

(i.e., the region where the detonation waves collide and
overlap) relative to the original pressure of the individual
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detonation waves P1 can be correlated to the incidence
angle φ0 between two symmetric converging detonation
waves. An analytical expression for the ratio P2/P1 is
derived using the Rankine–Hugoniot jump conditions in
Appendix A. In Appendix A, we also plot P2/P1 versus
incidence angle φ0 for a range of heat capacity ratios γ
for different types of HE. We hypothesize that we may
be able to enhance jetting by taking advantage of this
phenomenon.

III. RESULTS AND DISCUSSION

In the following paragraphs, we present optimal results
for several of our design parameterizations obtained us-
ing the optimization methodology described in Section
II D. Figure 9 shows a density plot for an early time
“initial” state for each of the design parameterizations
that we present. Figure 9(a) shows the baseline case
with a single detonator centered at the left of the HE
region. Figure 9(b), (c), and (d), show the optimal ini-
tial states for the design parameterizations described in
Figure 8(a), (b), and (c), respectively. Density plots at a
time just prior to the detonation wave striking the liner
are shown in Figure 10 for the same parameterizations as
in Figure 9. Velocity vectors where the size of the vec-
tor corresponds to magnitude are overlaid on the plots
in Figure 10. Pressure plots for the baseline case and for
each of the design parameterizations are shown in Figure
11.

Ultimately, the optimal designs from several of our
parameterizations produce very similar detonation wave
fronts. This appears to be a case of “convergent evo-
lution” where our vastly different parameterizations pro-
duce the same outcome when optimized. This wave front
can be seen for three different parameterizations in Fig-
ure 11(b)–(d), where the front is slightly concave as op-
posed to the convex wave front seen in the baseline case
in Figure 11(a). Localized high-pressure regions along
the wave front can also be observed in Figure 11(b)–(d).
These high-pressure regions along the wave front corre-
spond to collisions between distinct detonation waves.
These distinct detonation waves either emanate from the
detonators or for the case in Figure 11(d) have been
“split” into distinct waves by the metal inclusion. How-
ever, these high-pressure regions appeared to have a fairly
minor effect on jetting properties. This is likely due to
the fact that these high pressure regions are very local-
ized and do not affect liner collapse velocity outside of a
relatively small area. Further discussion on the effect of
detonation wave collisions is provided later in this section
and in Appendix A.

Density plots of jets produced by the baseline case and
for an optimal case are shown in Figure 12(a) and (b),
respectively. The optimal jet in Figure 12(b) has a longer
length, higher tip velocity, and more of the mass is con-
centrated towards the front of the jet than the baseline
jet in Figure 12(a). All of these properties contribute to

(a)

(b)

(c)

(d)

FIG. 9: Density plots at a time ∆t just after detonator
ignition for several cases that we investigated: (a)
baseline case (see Figure 1), ∆t = 0.1 µs; (b) optimal
three detonators [see Figure 8(a)], ∆t = 0.1 µs; (c)
optimal three detonators with time delay [see Figure
8(b)], ∆t = 0.3 µs; (d) optimal metal inclusion [see
Figure 8(c)], ∆t = 0.1 µs.

increasing the fitness metric Φ2 for the optimal jet and
consequently the penetration depth.

We also found that this optimal detonation wave front
can be reproduced in a simpler manner by arraying three
or more detonators along a specific function, such as a
semicircle or parabola. For a semicircular arrangement,
we refer to the center of the full circle as the focal point
F , which corresponds to the semicircle radius (see Fig-
ure 13). Using the Merlin workflow software49, we ran
several sets of simulations using Nd = 3, 5, 7, and 60
detonators arrayed along a semicircle to investigate the
effect of modifying F . For Nd = 60, the detonator array
essentially produces a continuous detonation wave (see
Figure 14). Figure 15 plots the fitness metric Φ2 [see
Equation (16)] versus F for several sets of simulations
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(a)

(b)

(c)

(d)

FIG. 10: Density plots at a time ∆t just prior to the
detonation wave striking the liner for several cases that
we investigated. Velocity vectors (where size
corresponds to magnitude) are overlaid on the plots to
indicate the velocity direction of the detonation wave
front: (a) baseline case (see Figure 1), ∆t = 1.4 µs; (b)
optimal three detonators [see Figure 8(a)], ∆t = 1.6 µs;
(c) optimal three detonators with time delay [see Figure
8(b)], ∆t = 1.7 µs; (d) optimal metal inclusion [see
Figure 8(c)], ∆t = 2.2 µs.

involving different values of Nd. Figure 15(a), (b), and
(c) are for cases where the liner angle α = 60◦, 45◦, and
30◦, respectively. Note that F < 0 implies that the array
of detonators is convex and produces a convex detonation
wave (similar to the baseline case) and F > 0 implies that
the array of detonators is concave and produces a con-
cave detonation wave. As the magnitude of F increases,
the detonation wave becomes flatter.

The simulation data plotted in Figure 15 demonstrates
that there is generally a distinct optimal value of F . As
expected, the optimal value of F changes depending on
the liner angle α that is used. For instance, for the case

(a)

(b)

(c)

(d)

FIG. 11: Pressure plots at a time ∆t just prior to the
detonation wave striking the liner for several cases that
we investigated: (a) baseline case (see Figure 1),
∆t = 1.4 µs; (b) optimal three detonators [see Figure
8(a)], ∆t = 1.6 µs; (c) optimal three detonators with
time delay [see Figure 8(b)], ∆t = 1.7 µs; (d) optimal
metal inclusion [see Figure 8(c)], ∆t = 2.2 µs.

where α = 30◦ and Nd = 3, the optimal value is F ≈ 3.6
cm, whereas the optimal value is F ≈ 2.5 cm for the case
where α = 60◦ and Nd = 3. This optimal value of F also
varies slightly as Nd is increased. For the optimal value,
F > 0, which indicates that the optimal detonation wave
front is slightly concave. This is consistent with the op-
timal detonation wave fronts produced from our other
design parameterizations. Figure 14 shows the detona-
tion wave prior to striking the target for the case where
F = 2.5 cm, Nd = 60, and α = 60◦, which is clearly sim-
ilar to the detonation wave fronts produced by our other
optimal designs shown in Figures 10 and 11.

The natural question arises as to why these particular
detonation wave fronts tend to optimize jetting. A partial
answer to this question can be understood by consider-
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(a)

(b)

FIG. 12: Density plots showing the jet at ∆t = 15 µs
after detonator ignition for: (a) baseline case, jet tip
velocity = 0.426 cm/µs; (b) optimal three detonator
case [see Figure 8(a)], jet tip velocity = 0.465 cm/µs.
Note that the jet for the optimal case has a higher tip
velocity, with more mass concentrated towards the front
of the jet where the jet material is moving fastest.

(a)

FIG. 13: A simplified design parameterization that
involves only a single design parameter. The detonators
are arrayed along a semicircle (spaced equidistantly in
the y-direction). The detonation waves converge to a
focal point F which corresponds to the radius of the
circle. The diagram shows the case where the number of
detonators Nd = 5 detonators, although any number of
detonators can be used for this parameterization.

ing the diagrams in Figures 4 and 5. For a given liner

collapse angle β̂, we assume that there is a corresponding
optimal collapse velocity v0 that will produce values of
vj and mj that correspond to an optimal fitness metric

[e.g., the metric Φ2 in Equation (16)]. Since β̂ is not con-
stant and varies as the detonation wave sweeps across the
liner, the optimal collapse velocity v0 will also vary over
time. By tuning the incidence angle of the detonation
wave ω, which corresponds to the shape of the detona-
tion wave front, we can ideally ensure that we obtain the
optimal collapse velocity v0 at all times because v0 is di-
rectly dependent on ω via Equation (5). We note that
altering the type of HE used or making minor modifica-
tions to the liner geometry could alter the values of the
optimal parameters needed to achieve an optimal deto-
nation wave front. For instance, using a different type of

(a)

(b)

(c)

FIG. 14: Density and pressure plots for a semicircle
detonator configuration where F = 2.5 cm, Nd = 60,
and α = 60◦. The detonation wave front is shown at an
early time and at a time just prior to striking the liner:
(a) density, ∆t = 0.1 µs; (b) density with velocity
vectors, ∆t = 1.3 µs; (c) pressure, ∆t = 1.3 µs.

HE would affect the detonation velocity and would likely
require modifying the detonator locations to reproduce
the optimal detonation wave front.

The plots in Figure 15 also appear to demonstrate
that the pressure increase from detonation wave colli-
sions (P2/P1 as described in Appendix A) are having a
relatively minor effect on our fitness metric Φ2 and con-
sequently the penetrative properties of the jet. As the
number of detonators Nd along the semicircular array
is increased, the point detonators tend to blend into a
single continuous line and there are essentially no det-
onation wave collisions induced between the detonation
waves emanating from the individual point detonators.
Figure 15 demonstrates that, for Nd = 60 where deto-
nation wave collisions are negligible, there is very little
change in Φ2 from the simulations that use Nd = 5 where
detonation wave collisions are induced. This is a surpris-
ing result and appears to indicate that these detonation
wave collisions have a less significant effect on the jetting
properties than the angle ω at which the detonation wave
strikes the liner.
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(a)

(b)

(c)

FIG. 15: The fitness metric Φ2 plotted versus the
parameter F for several detonator quantities (i.e.,
Nd = 3, 5, 7 and 60). The liner angle α is varied for
each plot in the figure: (a) α = 60◦; (b) α = 45◦; (c)
α = 30◦. The relative concavity versus convexity for
values of F are marked above each plot (these markings
are meant to indicate the general behavior and are not
drawn to scale). The vertical solid line indicates where
F = 0 and the vertical dashed line approximately
corresponds to the optimal F for Nd = 3.

IV. CONCLUSIONS

Our optimization study demonstrates that there is an
optimal detonation wave front profile that increases the
penetration depth of the shaped-charge jet into a given
material. We were able to reproduce this detonation
wave front profile using several different parameteriza-
tions that involve modifying the locations of multiple det-
onators, the time delay between detonators, and using a
metal inclusion within the HE region. The fact that we
are able to arrive at very similar optimal detonation wave
fronts indicates a “convergent evolution” effect and im-
plies that we have obtained a fairly optimal point in the
parameter search spaces that we considered.

The collisions between detonation waves is another
phenomenon that we investigated in our study. Using
our design parameterizations, we are able to instigate
collisions between detonation waves, which increases the
pressure in the collision region between the waves. We
had originally hypothesized that the localized pressure
increases due to detonation wave collisions may help to
increase jet velocity and penetration depth. However,
we found that the shape of the detonation wave profile
appeared to be a much more significant factor in optimiz-
ing the linear shaped charge jetting than these localized
pressure increases from detonation wave collisions.

Future work may involve applying some of the lessons
learned in this study to other linear shaped-charge ge-
ometries. This includes modifying liner properties to ob-
serve the effect that this has on the optimal detonation
wave front. Experimental studies may also provide some
additional insight and provide a means of validating the
optimal designs that we developed in this study.
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Appendix A: Detonation wave collisions

Most shape charge designs involve a single detonator
or a single line of detonators that create a single deto-
nation wave that interacts with the liner material. How-
ever, the collision between multiple detonation waves ini-
tiated from separate detonators can increase pressure in
the collision region between the detonation waves above
the pressure of the individual waves, which we hypothe-
sized could be used to enhance the kinetic energy of the
jet. In the following paragraphs we use the Rankine–
Hugoniot equations to derive the bounds on this pres-
sure increase and its relational dependence on the angle
at which the detonation waves collide (i.e., the incidence
angle). We begin by considering the symmetric collision
of two detonation waves in two dimensions as shown in
Figure 16.

When two detonation waves collide, the detonation
wave front behind the collision point is converted to a
shock wave that traverses the products that have been
reacted by the opposing detonation wave. This causes a
refractive effect as the shock wave is not self-sustaining
and is moving through a new medium (i.e., the reacted
products rather than the reactants through which the
detonation waves move). The collision of two detonation
waves creates three distinct regions, which are the un-
detonated region ahead of the detonation wave (Region
0), the region behind each detonation wave (Region 1,
which excludes the collision region), and the collision re-
gion (Region 2) between the two detonation waves [see
Figures 16(b) and 17]. We denote properties of these
regions using the subscripts 0, 1, and 2, respectively.

Following the methodology described by Zhang et al.25,
Bdzil and Short52, Zhang24, and Liu et al.13, we can ap-
proximate the behavior within the three regions of the
box shown in Figure 16(b) (i.e., the three regions near
the collision point) as being equivalent to the station-
ary reflection of an oblique detonation wave at a rigid
wall where the reflected wave is a shock wave. Under
this approximation, we can describe the behavior in the
three regions using the diagram of Figure 17. Regions 0
and 1 are separated by the incident oblique detonation
wave with angle φ0 and Regions 1 and 2 are separated
by the reflected shock wave with angle φ2. Due to the
refractive effect, the angle of incidence φ0 is generally not
equal to the angle of reflection φ2. Note that the velocity
at which mass enters perpendicularly to the stationary
oblique detonation wave is equal to the detonation wave
velocity ud in this approximation. In the following para-
graphs, we develop a relation for the ratio of the pressure
near the collision point in the collision region to the pres-
sure of the individual detonation waves (i.e., P2/P1) as a
function of the incidence angle φ0.

We start this derivation using a similar process to that
described by Zhang et al.25. The Rankine–Hugoniot con-

(a)

(b)

FIG. 16: When two detonation waves collide, a
high-pressure area is created in the region in which the
detonation waves overlap: (a) prior to detonation wave
collision; (b) just after the detonation waves collide.
The black rectangle shown in (b) represents the three
regions we consider in Figure 17.

servation of mass equation applied across Regions 1 and
2 is equal to

ρ1u1,n = ρ2u2,n, (A1)

where ρ is density and u is the velocity of the mass within
the specified region relative to the oblique detonation
wave or the reflected shock wave. The subscripts n and t
denote the normal and tangential components of velocity
relative to the oblique detonation wave (or the reflected
shock wave), respectively. The normal component of ve-
locity for mass in Region 1 that is entering Region 2 (i.e.,
u1,n) can be found from the following geometric relation

u1,n = u1 sin(φ2 + θ), (A2)

where θ represents the deflection angle of the mass as
it passes through the reflected shock wave and φ2 is the
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(a)

FIG. 17: The collision of two symmetrical detonation
waves can be approximated as a detonation wave
reflecting off of a rigid wall13,24,25. Under this
approximation, there are three regions to consider:
Region 0 represents the undetonated region, Region 1 is
the region behind the detonation wave (excluding the
collision region), and Region 2 is the collision region.
The variables used in the derivation for the ratio of
pressures between Region 2 and Region 1 (i.e., P2/P1)
are marked on the diagram.

angle of reflection (see Figure 17). Substituting Equation
(A2) into (A1) and rearranging, we obtain the following
relation for u2,n:

u2,n =
ρ1
ρ2

sin(φ2 + θ). (A3)

We now consider the Rankine–Hugoniot conservation
of momentum equation across Regions 1 and 2, which is
equal to

P1 + ρ1u
2
1,n = P2 + ρ2u

2
2,n. (A4)

After some minor rearrangement and using the conser-
vation of momentum, where ρ1u1,n = ρ2u2,n, Equation
(A4) can be rewritten as

P2 − P1 = ρ1u1,n(u1,n − u2,n). (A5)

Substituting Equations (A2) and (A3) into (A5) allows
us to eliminate u2,n from the expression to produce

P2−P1 = ρ1u1 sin(φ2+θ)[u1 sin(φ2+θ)−ρ1
ρ2
u1 sin(φ2+θ)],

(A6)
which can be further rearranged to obtain

P2

P1
= 1 +

ρ1u
2
1

P1

(
1− ρ1

ρ2

)
sin2(φ2 + θ). (A7)

The density ratio across the reflected shock wave [i.e.,
ρ1/ρ2 in Equation (A7)] can be developed using the
Rankine–Hugoniot equations for the conservation of
mass, momentum, and energy (a derivation of the fol-
lowing equation is provided in many textbooks on the

subject53) and is equal to

ρ1
ρ2

=
2 + (γ − 1)M2

n

(γ + 1)M2
n

, (A8)

where Mn = M sin(φ2 + θ) is the Mach number normal
to the reflected shock wave separating Regions 1 and 2.

The Mach number M can be derived in the following
way. By definition, the velocity u1 is equal to (see Figure
17)

u1 =
[
u′21,n + u′21,t

]1/2
. (A9)

According to the Chapman–Jouguet condition, which as-
sumes that the detonation wave just reaches the speed of
sound c1, the normal velocity is equal to

u′1,n = c1 =
γ

γ + 1
ud, (A10)

and, from trigonometry, the tangential velocity is equal
to

u′1,t = u0,t =
ud

tan(φ0)
. (A11)

Substituting the relations in Equations (A10) and (A11)
into Equation (A9) and performing some minor algebra
produces13,25

M =
u1
c1

=

[
1 +

(
γ + 1

γ

)2

cot2(φ0)

]1/2
, (A12)

which allows us to compute the Mach number M as a
function of only the incidence angle φ0 and the ratio of
specific heats γ of the HE.

Additionally, the material equation of state (EOS) for
the HE can be used to calculate the ratio ρ1/P1 in the
second term on the right-hand side of Equation (A7).
For this derivation, we assume that the HE EOS can be
described simply as25

ρ1
P1

=
γ

c21
. (A13)

Using the definition of the Mach number (i.e., M =
u1/c1), we can rewrite Equation (A13) as

ρ1
P1

=
γM2

u21
. (A14)

If we now substitute Equations (A8) and (A14) into
Equation (A7), we obtain the following expression:

P2

P1
=

(1− γ)

γ + 1
+

2γ

(γ + 1)
M2 sin2(φ2 + θ). (A15)

Equations (A12) and (A15) provide an explicit relation
for the pressure ratio P2/P1 as a function of only the ratio
of specific heats γ, the deflection angle θ, the incidence
angle φ0, and the reflection angle φ2. Note that for many
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types of explosives, γ ∈ [2, 3] and is dependent on the
explosive material that is used.

To develop a relation solely between P2/P1 and the
incidence angle φ0, we must first find expressions that
relate θ and φ2 to φ0. We start by deriving an expression
relating θ and φ0. The following relation can be derived
from basic trigonometry:

tan(φ0 − θ) =
u′1,n
u′1,t

. (A16)

Substituting Equations (A10) and (A11) into Equation
(A16) produces

tan(φ0 − θ) =
γ

γ + 1
tan(φ0), (A17)

which can be further simplified using the well-known
trigonometric relation:

tan(φ0 − θ) =
tan(φ0)− tan(θ)

1 + tan(φ0) tan(θ)
. (A18)

Setting Equations (A17) and (A18) equal to each other
and solving for θ gives the following explicit expression
for computing θ as a function of only φ0:

θ = tan−1
{

tan(φ0)

1 + γ
[
1 + tan2(φ0)

]}. (A19)

To develop a relation between φ2 and φ0, we again
apply the Rankine–Hugoniot conservation of mass across
Regions 1 and 2, such that

u2,n
u1,n

=
ρ1
ρ2
. (A20)

From simple geometry, the normal and tangential veloc-
ity components are equal to

u1,n = u1 sin(φ2 + θ),

u1,t = u1 cos(φ2 + θ),

u2,n = u2 sin(φ2),

u2,t = u2 cos(φ2).

(A21)

Dividing the normal and tangential velocity components
of Equation (A21) produces

u1,n
u1,t

=
u1 sin(φ2 + θ)

u1 cos(φ2 + θ)
= tan(φ2 + θ), (A22)

and

u2,n
u2,t

=
u2 sin(φ2)

u2 cos(φ2)
= tan(φ2). (A23)

From the conservation of momentum, the tangential com-
ponents of velocity that act along the reflected shock
wave are equal (i.e., u1,t = u2,t). Using this fact and

dividing Equation (A23) by Equation (A22), we obtain
the following relation

u2,n
u1,n

=
tan(φ2)

tan(φ2 + θ)
=
ρ1
ρ2
, (A24)

which is equal to the density ratio ρ1/ρ2 according to
Equation (A20). Setting Equation (A24) equal to Equa-
tion (A8) results in

tan(φ2)

tan(φ2 + θ)
=

2 + (γ − 1)[M sin(φ2 + θ)]2

(γ + 1)[M sin(φ2 + θ)]2
, (A25)

which provides an implicit relation between φ2 and θ that
is only a function of γ and M .

By simultaneously solving the implicit relation in
Equations (A25) and the expressions in Equations (A12),
(A15), and (A19), we can compute the pressure ratio
P2/P1 as a function of only the incidence angle φ0 and
the ratio of specific heats γ (which is a material prop-
erty of the HE through which the detonation waves are
propagating). Figure 18(a) provides a plot of P2/P1 ver-
sus the incidence angle φ0 for several values of γ ∈ [2, 3].
Similarly, Figure 18(b) provides a plot of θ versus the in-
cidence angle φ0 for several γ values. According to Bdzil
and Short52, there is a critical incidence angle φ0,c (gener-
ally between 40◦ and 50◦) above which the reflected shock
wave becomes irregular. At this point, the assumption
that the velocity u2 is parallel to the rigid wall breaks
down and the formulation described above is no longer
valid. For φ0 > φ0,c, the collision point tracks along a
line rather than a single point. The plots in Figure 18
are only plotted up to this critical incidence angle φ0,c.

An approximate alternative formulation that may be
useful for some applications is to assume that the deto-
nation waves near the collision point partially behave in
a similar manner to shock waves. For this approximate
formulation, the following relation could be used in place
of Equation (A19) to determine θ:

tan(φ0 − θ)
tan(φ0)

=
2 + (γ − 1)[M sin(φ0)]2

(γ + 1)[M sin(φ0)]2
, (A26)

which can be derived in a similar way to Equation (A25)
by applying the same method across Regions 0 and 1.
Figure 19 shows a plot of P2/P1 for this alternative for-
mulation. In this case, the maximum pressure increase
P2/P1 that is achievable from the collision of two detona-
tion waves occurs when the incidence angle φ0 = 0 (i.e.,
when the detonation waves strike each other head on)
and decreases to unity as φ0 → π/2 (i.e., when the deto-
nation waves are moving parallel to each other). This ap-
proximate alternative formulation may be useful in some
cases.
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