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Abstract An inverse bubble inflation test is proposed

utilizing full displacement field matching to obtain non-

linear material models suitable for the Finite Element

(FE) method. In this paper a known non-linear or-

thotropic material model is assumed as the solution for

the inverse method to illustrate the process. A bub-

ble inflation FE analysis is performed with the known

material model to determine the load and displace-

ment field from the assumed material. Polynomial sur-

faces are fit to the nodal displacement values of the

FE model, such that the entire displacement field is

stored as three unique polynomial surfaces. An error

formulation was established to quantify the quality of fit

between different bubble inflation displacement fields.

Gradient based optimization is used to obtain the as-

sumed material model by matching the full displace-

ment field. The inverse bubble inflation test successful

produces a non-linear orthotropic model that is anal-

ogous to the assumed non-linear orthotropic material,

and thus demonstrates that the inverse bubble inflation

analysis would be able to characterize other non-linear

orthotropic materials.
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1 Introduction

Membrane structures designed with technical woven tex-

tiles, coated fabrics, and various polymer membranes

are often operated in the non-linear region, thus it is

anticipated that the material model should be able to

replicate the non-linear behavior of the material. An

inverse bubble inflation method may improve the ho-

mogenization of the material due to the complex load

state experienced as the material deforms. However, a

mechanism for obtaining material models utilizing the

inverse method with a bubble inflation test has not

yet been established. This paper proposes the proce-

dure for obtaining a non-linear orthotropic material

model from an inverse bubble inflation test. The re-

sults of a non-linear Finite Element (FE) analysis of a

bubble inflation test are used instead of experimental

data from a physical bubble test. The non-linear or-

thotropic material model used in the bubble inflation

FE analysis is assumed to be the solution. To demon-

strate the capability of the inverse bubble inflation test,

it is shown that the method can reproduce an anal-

ogous non-linear orthotropic model from the assumed

non-linear orthotropic material. This suggests that the

inverse bubble inflation test can successfully determine

a non-linear orthotropic material model from a bubble

inflation test on non-linear orthotropic material.

The FE method has been an important tool used in

the design and analysis of structures. The accuracy of

these models depends largely on the ability of the ma-

terial model to replicate the physical response of the

material. Obtaining an accurate material model has

been the topic of many research projects. These ma-

terial models can be described by one of two broad

categories: micromechanical or macromechanical. Mi-

cromechanical material models analyze the complex in-
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teraction of the material. For an entire fabric structure,

a micromechanical model will include the interactions

between individual yarns. While there is benefit to this

high level of fidelity, it is also highly impractical for

modeling an entire structure as the model becomes too

computationally expensive (Cavallaro et al 2003).

Macromechanical models assume the material to be

of a single continuum, for which the constitutive re-

lationships can be determined from material testing.

Often uniaxial and biaxial tests are performed on the

material, in which case the experimental stress/strain

relationship is used to characterize the material. An ex-

ample of a macromechanical material model would be

the plane stress constant thickness orthotropic model.

This model has been commonly used, for membrane

structures, because of the model’s ability to exhibit di-

rection dependent stiffness. Four constants are needed

to define the material model, the Young’s moduli in the

primary and secondary direction (E1, E2), Poisson’s ra-

tio (ν12), and Shear modulus (G12). In some cases, a

non-linear material model can more accurately charac-

terize the physical behavior of a material.

The use of a non-linear orthtropic material model

for PVC-coated polyester was -demonstrated by Am-

broziak and K losowski (2014). Both uniaxial and bi-

axial tensile tests were conducted. Stress strain curves

were calculated in both material directions from these

tests. While the resulting relationship was highly non-

linear, it was observed to be approximated well by a

piece-wise linear function. A tri-linear orthotropic ma-

terial model was purposed. Fundamentally this mate-

rial model is a plane stress linear orthotropic material

model. Though three different Young’s moduli, for both

E1 and E2, are defined each for a particular strain re-

gion. Then once the element exceeds this strain region,

a new Young’s modulus is assigned. The result is a

simple non-linear material model which correlated well

with the experimental data.

There are direct and inverse methods for obtaining

material models. The method utilized by Ambroziak

and K losowski (2014) is a direct method. A physical test

is conducted to determine the material’s constitutive

relationship. The resulting experimental relationship is

then passed directly into the material model for an FE

analysis replicating the testing conditions. Ideally, it

is then shown that the material model is capable of

replicating the behavior of the physical test.

The inverse method is fundamentally different from

the direct method. With the inverse method, an FE

analysis is created replicating the conditions of the phys-

ical test first. Optimization is then used to determine

the best material model parameters by minimizing the

difference between the FE analysis and the physical

test. While each method has advantages, the inverse

method may reduce the engineering time required to

create material models suitable for FE analysis. More

importantly, the material is characterized with a load

state that is more complex than traditional uniaxial

or biaxial testing. This added complexity may be more

representative of reality. Materials such as technical wo-

ven textiles or coated fabrics violate continuum me-

chanics in a macro sense as the material is not rep-

resented by a single continuum. Thus the homogeniza-

tion of the material into discrete elements for use in

the FE method may be a cumbersome task. The in-

verse method is capable of determining the best homog-

enized FE material model representative of a complex

load state.

Garbowski et al (2011) used the inverse method to

characterize paper by performing biaxial tests on pa-

per. A circular hole was cut in the center of the biax-

ial test sample to increase the inhomogeneous response

field. Digital Image Correlation (DIC) was used to cap-

ture the full field displacements of the test samples.

The physical test was reproduced in an FE analysis.

The deformation of the cruciform specimen is then com-

pared to the nodes of the FE model. An elastic-plastic

orthotropic material model was thus determined with

much success by optimizing the parameters of the ma-

terial model, minimizing the differences between the FE

model and the deformations of the test specimen. In the

end a software package was created suitable for deter-

mining the constitutive relationship of test specimens

that can be performed on a portable computer.

Bubble inflation tests are a popular method for in-
troducing an equal biaxial load case, especially in cases

where very large deformations may inhibit the abil-

ity for a conventional biaxial test. The bubble infla-

tion tests have been used to characterize polymers such

as Ethylene Tetra Fluoro Ethylene (ETFE) and even

flour/water dough. A bubble inflation test involves clamp-

ing a material sample to a flat plate with a circular

clamp. A medium is then introduced on one side of

the material, which applies a load to the material. The

material inflates from the pressure, creating a bubble

shape seen in Fig 1. Image tracking techniques, such

as DIC can be used to track the deformation of the

material as it inflates. Previous literature has assumed

the resulting bubble to be spherical in shape. Reuge

et al (2001) and Charalambides et al (2002) used a sin-

gle camera to measure the bubble height, while Galliot

and Luchsinger (2011) used a two camera DIC setup.

Assuming that the material is incompressible, it is pos-

sible to approximate the strain utilizing the height of

the bubble and the initial bubble radius. Pressure ves-
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sel theory is used to calculate the stress. This results in

a stress strain relationship for a 1:1 biaxial load case.

Test Fixture

Inflated Material

Fig. 1 Inflated material in a bubble test fixture

This paper proposes the use of an inverse bubble

inflation test for obtaining non-linear orthotropic ma-

terial models. The procedure for obtaining the material

model via inverse bubble inflation technique is outlined.

The results of an FE analysis with an assumed mate-

rial model are used as a substitute for the experimental

bubble inflation test data. This is done to demonstrate

that the method is capable of finding the correct mate-

rial model parameters. If the material model obtained

from the inverse bubble procedure is analogous to the

known starting point, it can be concluded that the in-

verse bubble inflation technique is a valid method for

characterizing non-linear orthotropic models from non-

linear orthotropic materials.

The inverse bubble inflation method to obtain ma-

terial models is intended for thin membrane material

used in inflatable structures or structural membranes.

However the method is not limited to just membrane

materials, but could be used to investigate other ma-

terial that could be appropriately described by a thin

shell or membrane element formulations. The method

utilizes just a single test to characterize non-linear or-

thotropic materials.

2 Methodology

It is important to understand the effectiveness of the

inverse bubble inflation method for an ideal test sce-

nario before attempting the technique on physical test

data. A large number of factors may influence the abil-

ity to obtain an accurate material model, or otherwise

prove the inverse method impractical. Thus to demon-

strate the ability of the inverse bubble inflation test to

reproduce the material models from an assumed ideal

material, demonstrates that the technique is capable

of producing accurate material models. Once this has

been demonstrated the test method may be suitable for

characterizing material models from physical tests.

A non-linear FE model representing the physical re-

sponse of the bubble test was created using MSC Marc

(2014). The model comprises of 800 linear quad ele-

ments arranged in a circle that is 200 mm in diame-

ter, as seen in Fig. 2. The appropriate mesh size was

determined by an initial mesh convergence study. Pin

constraints are applied around the edge of the circle. A

linear pressure ramp of 300 kPa is applied to all of the

elements, which represents the load from the inflated

medium as a function of time. Upon completion of the

FE simulation, the node data is exported at pressures

of interest for the error calculation.
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Fig. 2 Mesh used for the bubble inflation FE model

MSC Marc (2014) includes a material model, the

NLELAST model definition, capable of creating a sim-

plified non-linear elastic orthotropic material model.

The model is a hyperelastic planar orthotropic material

model. The material model is capable of producing a

directional dependent non-linear load elongation curve.

In addition the material model contains no plasticity,

so the model is fully recoverable when unloaded. The

Young’s moduli (E1 , E2), Poisson’s ratio (ν12), and

shear modulus (G12) can be defined as functions of the

strain component in their respective direction. During

deformation, the material model iterates the elemental

strain components in order to assign the appropriate

orthotropic moduli to the element. To add complexity

to the inverse bubble inflation test, third order poly-

nomials are chosen for each of the moduli as seen in

Eqs. 1 - 3. Demonstrating the success of the inverse

bubble inflation test on this highly non-linear material

model suggest that the inverse method may be just as

successful with simpler material models. The stress out-

put of such a model may be non-sensible as the model

may violate the constitutive relationships of traditional

FE theory. However, such material models may still be
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useful in the design/analysis of structures by accurately

predicting the load displacement behavior.

G12(γ12) = β0γ
3
12 + β1γ

2
12 + β2γ12 + β3 (1)

E2(ε2) = β4ε
3
2 + β5ε

2
2 + β6ε2 + β7 (2)

E1(ε1) = β8ε
3
1 + β9ε

2
1 + β10ε1 + β11 (3)

A mesh convergence study determined that the 800

element mesh produced acceptable displacement error

while having a low cost computational run time. The

mesh size used is largely dependent upon the compu-

tational resources available and desired accuracy. Since

the optimizer will call the FE model for each function

evaluation, reducing the FE model run time greatly re-

duces the optimization time. To avoid a mesh sensitive

optimization result, it is recommended to perform an

initial mesh convergence study. The mesh convergence

study showed the 800 element mesh to produce dis-

placements values nearly identical to finer meshes. The

maximum displacement value was within 0.05 percent

for mesh sizes of 800 and 831,472 elements.

The sensitivity of the FE model to Poisson’s ratio

was investigated. The FE bubble inflation model was

run with different Poisson’s ratios for the same non-

linear moduli (E1 , E2, & G12). The resulting maxi-

mum displacement values were normalized to the set’s

average, and can be seen in Fig. 3 for Poisson’s ratios

ranging from 0.05 to 0.45. It is observed that for the

same non-linear moduli, the Poisson’s ratio varied the

maximum displacement value by plus or minus three

percent. It was determined that the Poisson’s ratio was

not a significant contribution to the FE bubble inflation

model. Thus the Poisson’s ratio was held constant, and

not included as a variable for optimization.

Vanderplaats Research & Development Inc. (2001)

Design Optimization Tools (DOT) was the optimiza-

tion library used in the inverse method. DOT is a multi-

purpose gradient based software library designed for

engineering applications. Gradient based optimization

proved to be a sufficient optimization method in demon-

strating the effectiveness of the inverse bubble test. The

constrained gradient optimization algorithm used was

the Modified Method of Feasible Directions (MMFD).

A simple python script interfaces with DOT and the

MSC Marc input file of the bubble model. The mate-

rial model variables (β0 - β11 of Eqs. 1 - 3) are fed into

DOT as variables to optimize. The optimization goal

is to minimize the error between the FE model bub-

ble displacements and the known displacements. This
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Fig. 3 Normalized maximum displacement value of FE bub-
ble inflation model for various Poisson’s ratios

is subjected to two constraints. The first being that the

moduli must remain above zero for the strain range of

the material model. The second constraint ensures that

non-linear FE analysis produces a valid exit code, as

some set of material model parameters may generate

convergence problems. DOT was designed to be useful

as an engineering optimizer, so the algorithm attempts

to stay in the feasible region as much as possible in one

dimensional searches.

3 Surface Fitting

The assumed non-linear orthotropic material model de-

rives from physical tests on PVC-coated polyester. The
β terms in Eqs. 1-3 were fit to the uniaxial test data

in the primary, secondary, and 45-bias directions. A

plot of the three moduli limited to their strain com-

ponent can be seen in Fig. 4. The magnitude and non-

linearilty of E1 dominates the other moduli. It can be

noted that it is possible to simplify the moduli to a

lower order polynomial as the curves do not represent

a third order polynomial, but solving the variables of

the third order polynomial adds additional complexity

for the optimization problem and better demonstrates

the effectiveness of the inverse method. A Poisson’s ra-

tio of 0.24 was used, which is similar to the Poisson’s

ratio used for various PVC-coated polyesters by Gal-

liot and Luchsinger (2009) in a standard orthotropic

model. The FE bubble inflation model is run with this

assumed material model, simulating a physical bubble

inflation test on PVC-coated polyester. Each curve in

Fig. 4 ends at the maximum strain component value

as experienced by the FE bubble model. The result of

the analysis will be used instead of experimental bubble
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test data to demonstrate the effectiveness of the inverse

bubble inflation test.
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Fig. 4 Non-linear orthotropic material model moduli as func-
tions of strain

Three separate polynomials are fitted to the nodal

displacement values at seven unique pressure instances

of the inflating FE model. All of the nodes of the mesh

prior to inflation lie in the XY plane. Thus each node

will have a unique displacement value as a function of

it’s original XY location. The least squares method is

used to fit a fourth order polynomial surface to the node

locations for the displacement values in theX, Y , and Z

directions. It was found that a fourth order polynomial,

defined by 25 coefficients and shown in Eq. 4, to be

the best fit. The fitted surfaces along with the nodal

displacement values can be seen in Figs. 5 - 7.

F (X,Y ) = C0X
4Y 4 + C1X

3Y 4 + C2X
2Y 4 + C3XY

4+

C4Y
4 + C5X

4Y 3 + C6X
3Y 3 + C7X

2Y 3+

C8XY
3 + C9Y

3 + C10X
4Y 2 + C11X

3Y 2+

C12X
2Y 2 + C13XY

2 + C14Y
2 + C15X

4Y+

C16X
3Y + C17X

2Y + C18XY + C19Y+

C20X
4 + C21X

3 + C22X
2 + C23X + C24

(4)

The entire nodal displacements of the bubble infla-

tion FE model can be represented by a series of poly-

nomials, as a function of the original nodal XY coordi-

nates, at different inflation pressures. The polynomials

are exceptional fits to the nodal X, Y , and Z displace-

ments. The coefficient of determination for each poly-

nomial was greater than 0.999 as seen in Table 1. A

comparison of the fitted displacement Z values from the
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Fig. 5 Nodal displacement X values on the fitted fourth order
polynomial surface at 300 kPa
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Fig. 6 Nodal displacement Y values on the fitted fourth order
polynomial surface at 300 kPa
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fitted polynomial and the known displacement Z val-

ues is seen in Fig. 8. The fitted polynomial and known

displacement values are nearly identical.

5 10 15 20 25 30 35 40 45

Nodal Disp Z

5

10

15

20

25

30

35

40

45

P
o
ly

n
o
m

ia
l 

F
it

te
d

 D
is

p
 Z

Data Point

Perfect Fit

Fig. 8 Disp Z nodal values against the Disp Z polynomial
fitted values at 300 kPa

Table 1 Coefficient of determination for the polynomials
used to define the bubble displacements

Pressure (kPa) R2 Disp X R2 Disp Y R2 Disp Z

22 0.99999 0.99971 0.99999
59 0.99999 0.99980 0.99999
97 0.99998 0.99994 0.99999
132 0.99994 0.99989 0.99999
186 0.99986 0.99970 0.99998
251 0.99967 0.99901 0.99994
300 0.99962 0.99836 0.99994

Utilizing polynomials to represent the FE model

adds simplicity to the inverse method. Only the coeffi-

cients of the polynomials need to be stored, as opposed

to the entire nodal displacement values. The error for-

mulation minimizes the difference in the full field nodal

displacement values. The correct displacement values

can be calculated by simply evaluating a polynomial.

These are then compared with the nodal displacements

of a new FE run to evaluate the error from a new ma-

terial model.

A DIC setup using at least two cameras is capable

of accurately providing the full three dimensional dis-

placement field on a physical bubble inflation test. It

can be cumbersome setting up the DIC to calculate dis-

placement values at the exact node locations of the FE

model. Instead of mapping the DIC displacement val-

ues to specific node locations, a polynomial surface of

best fit is used. These polynomials can be arranged such

that the axes align with that of the FE mesh. Then the

polynomial can be evaluated at the FE model’s node

locations to compare the displacement results of the

FE model and the physical test. Additionally the poly-

nomials represent a smooth surface to match the full

displacement field to the FE model. This smooth sur-

face eliminates noise in test data that may result from

the DIC calculated displacement data. Thus the inverse

bubble inflation test can be utilized on physical test

data easily by swapping the current displacement poly-

nomials with displacement polynomials from a physical

test.

The inverse bubble inflation test was first attempted

by only matching the nodal Z values of the FE mod-

els. It was then discovered that the physical shape was

non-unique to the material model. This was because

very different non-linear material models could repro-

duce a nearly identical inflated bubble shape. Instead,

by matching the full displacement field (X, Y , and Z

displacements) it is ensured that a unique solution is

achieved.

4 Optimization

Optimization is the mechanism used by the inverse method

to determine material models. The optimum material

model is determined from gradient based optimization

on random starting points. The FE analysis results for

a particular set of material model parameters is com-

pared against the assumed material model, utilizing a

single objective function. An objective function value

of 0.0 represents that the exact displacement field was

produced. This objective function is minimized until a

local minimum has been found. Multiple gradient opti-

mizations are run simultaneously from random starting

points to determine the global minimum, which rep-

resents the material model determined by the inverse

bubble inflation test.

4.1 Objective Function

Root mean square (RMS) error is used to evaluate how

well the FE analysis of a particular material model

matches with the known solution. The error can be rep-

resented by a single value for each FE analysis. This

single value is minimized as the optimizer searches for

the ideal material model.

At each of the seven pressures for which polynomi-

als were fitted to the bubble inflation model (see Ta-

ble 1), three RMS errors are calculated. One for each

nodal displacement direction. The fitted polynomials

(which could represent experimental bubble inflation
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displacement data, but in this case represents the as-

sumed non-linear orthotropic material model) are the

terms PX , PY , and PZ . The results of the FE model

nodal displacements for a new material model are the

terms dX , dY , and dZ . Both the polynomials and the

displacements are functions of pressure p, as there is a

unique set of polynomials and displacements for each of

the seven pressures of interest. The root mean square

errors for the three directions are seen in Eqs. 5 - 7

as functions of pressure, where n represents the total

number of nodes.

eX(p) =

√√√√ n∑
i=1

(dXi(p) − PXi(p))2

n
(5)

eY (p) =

√√√√ n∑
i=1

(dY i(p) − PY i(p))2

n
(6)

eZ(p) =

√√√√ n∑
i=1

(dZi(p) − PZi(p))2

n
(7)

In total, 21 different root mean square errors are cal-

culated for the three directions at seven different pres-

sures. A single error value which represents the overall

fit between the FE bubble inflation model and the as-

sumed material can be created by simply summing up

all of the root mean square errors. However this intro-

duces bias into the objective function. The FE bubble

model is inflated in the Z direction, thus it is antici-

pated that the nodal displacements will always be larger

in the Z direction as opposed to the X and Y displace-

ments. In an effort to reduce this bias, each root mean

square error is normalized by the maximum polyno-

mial value at the corresponding pressure. The result is

a summation of equally weighted errors seen in Eq. 8.

Thus e represents a single value that describes the entire

fit between the known non-linear orthotropic material

and the attempted material model.

e =

p∑
i=1

eX(i)

max(PX(i))
+

eY (i)

max(PY (i))
+

eZ(i)

max(PZ(i))
(8)

The overall objective function of the optimization

can be expressed by minimizing the overall error of the

FE model’s results for a particular material model. This

is subjected to two constraints, the first being that the

moduli in the material model remain positive for their

entire strain limit. The second being that the FE anala-

ysis is valid, in which case Marc outputs an exit code of

3004. The objective function can be seen in Eq. 9. The

two constraints serve as logical flags for the constrained

optimization. When a constraint is violated, a value of

1 is fed into the algorithm, while a value of -1 indicates

a satisfied constraint. This type of true-false boolean

constraint may be problematic for a gradient based op-

timization algorithm, however DOT deals with boolean

constraints well by backtracking when encountering a

violated constraint in the one dimensional search. It is

important to mention that DOT’s approach works well,

provided that the optimization is started from a feasible

point.

minimize: e

such that: E1, E2, G12 > 0 and

Marc Exit Code = 3004

(9)

4.2 Procedure

Multiple optimizations are run to ensure that the best

material model is found. Fifty starting points are gener-

ated at random between the upper and lower bounds.

Each starting point, is then run through the bubble

inflation FE analysis to ensure the constraints are sat-

isfied. If a constrained is violated for a particular start-

ing point, a random starting point is generated between

the bounds. This process is repeated until each start-

ing point begins in the feasible region. It is ensured that

each starting point satisfies the constraints, because the

DOT optimizer cannot start with a violated true-false

constraint. The assumed non-linear orthotropic mate-

rial model variables chosen and optimization bounds

are listed in Table 2. These bounds were chosen to

be an order of magnitude in size, with the non-linear

orthotropic variables appearing somewhere in-between

the bounds. If the solution is unknown, appropriate

bounds may be chosen around the result of a single ini-

tial optimization. Random starting points were found

easier to generate than starting points selected from a

latin hypercube sampling that reside in the feasible re-

gion. Often a set of starting points, generated from a

latin hypercube sampling, included a point that vio-

lated one of the constraints. In order to overcome the

violated constraint, a new latin hypercube sampling was

generated. The repeated formation of latin hypercube

starting points was found more computationally inten-

sive than obtaining starting points generated from ran-

dom to reside in the feasible region. All 50 optimizations

are run simultaneously with the MMFD algorithm. The

material model determined from the inverse method has

the lowest found objective function.
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Table 2 Variables and bounds used for the non-linear or-
thotropic material model

Variable Assumed Value Lower Bound Upper Bound

β0 −7.96788 × 10−3 −1.0 × 10−2 0.0 × 100

β1 7.10747 × 10−1 0.0 × 100 1.0 × 100

β2 −1.56912 × 10−1 −3.0 × 10−1 0.0 × 100

β3 2.00439 × 10−2 7.0 × 10−3 7.0 × 10−2

β4 −1.06241 × 101 −1.0 × 103 1.0 × 102

β5 1.37830 × 101 −1.0 × 101 1.0 × 102

β6 −9.31830 × 10−1 −1.0 × 101 1.0 × 100

β7 1.39437 × 10−1 5.0 × 10−2 5.0 × 10−1

β8 −4.79622 × 102 −1.0 × 103 0.0 × 100

β9 2.12650 × 102 0.0 × 100 7.0 × 102

β10 −2.02028 × 101 −7.0 × 101 0.0 × 100

β11 8.06350 × 10−1 2.5 × 10−1 1.5 × 100

The majority of the DOT parameters are utilized in

their default configuration. This includes DOT’s vari-

able scaling, gradient step size, and convergence set-

tings. The overall optimization process is well suited

for parallel computing as the 12 variable gradient search

may be performed at the same time. In addition multi-

ple cores can be used in the FE bubble inflation analy-

sis.

5 Results

All 50 optimizations were performed in parallel. The op-

timum determined from each optimization can be seen

in Fig. 9, sorted from the worst objective value found

to the best. The result of each optimization represents

a local minimum that was found in the design space. It

is important to note that no two optimizations found

the exact same optimum material model. More than

half of the optimizations resulted in an objective value

less than 0.5, in which an objective of zero represents a

material model that produces the exact same displace-

ment field as the assumed non-linear orthotropic mate-

rial. These low objective functions suggest that result-

ing material models produce nodal displacements sim-

ilar to the assumed material. While the design space

does not appear to be flat, having multiple local mini-

mum near zero suggests that the problem is well posed.

The material models determined through the op-

timization are similar to the assumed non-linear or-

thotropic material. The material models resulting from

the top 10 percent of optimizations, alongside the as-

sumed material model is seen in Fig. 10. The variance

between moduli curves ultimately does not impact the

FE model as the full displacement fields are similar

based upon the low objective values.

The best material model parameters produce a dis-

placement field that is nearly identical to the assumed
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Fig. 9 Sorted optima of optimization results from 50 random
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Fig. 10 Five best material models resulting from the opti-
mization of 50 random starting points plotted alongside the
assumed non-linear orthotropic material

non-linear orthotropic material. Two-dimensional plots

of the node locations cut through the Y and X axes, as

the material is inflated, are shown in Figs. 11 & 12. The

node locations resulting from the 10 percent best found

material models are plotted alongside the assumed so-

lution. At the seven pressures, the node locations are

analogous among the different material models. It can

be further noted that the subtle variance in the best

material models (seen in Fig. 10) is even less notice-

able in the cut through plots of the FE bubble inflation

models.

The inverse bubble inflation test was demonstrated

to reproduce a highly non-linear material model from

an assumed non-linear orthotropic material. However,

obtaining the exact non-linear material model of the

bubble inflation test posses to be a challenging opti-

mization problem. This can be seen by the large num-
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Fig. 11 Node locations cut through the Y axis from the FE
bubble inflation models of the five best material models plot-
ted alongside the assumed non-linear orthotropic material
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Fig. 12 Node locations cut through the X axis from the FE
bubble inflation models of the five best material models plot-
ted alongside the assumed non-linear orthotropic material

ber of local minimum discovered while not finding an

objective function of zero.

6 Conclusion

An inverse bubble inflation test was performed from an

assumed non-linear orthotropic material. It was demon-

strated that the analysis produced non-linear material

models similar to the assumed non-linear orthotropic

material. Thus the inverse bubble inflation method is

capable of obtaining non-linear orthotropic models from

non-linear orthotropic materials. It is the intent of this

inverse bubble inflation analysis to be used to character-

ize non-linear orthotropic models from physical bubble

tests on a non-linear orthotropic material in the future.

It was possible to determine the non-linear orthotropic

model from the single bubble inflation load case with a

non-linear orthotropic material. The inverse bubble in-

flation technique may be capable of characterizing other

types of material models, on different types of materials

where a thin shell or membrane assumption would be

appropriate.

Polynomial surfaces were fitted to the nodal FE dis-

placement results of the known material model. These

polynomials are utilized as the solution in the forma-

tion of the objective function. Physical test data can be

easily utilized in the current bubble inflation test setup.

Polynomials can be fitted to the full displacement field

data that one may obtain using a multi-camera DIC

system.

The inverse bubble inflation test requires full dis-

placement field matching. It was first attempted to ob-

tain non-linear material models by matching the bubble

shape, however this was unsuccessful. Many different

material models were found to produce a similar bub-

ble shape. Thus the nodal X, Y , and Z displacements

are rather matched because the full displacement field

response is unique to a particular material model.

The inverse method can be utilized to obtain non-

linear orthotropic models from bubble inflation tests

on a non-linear orthotropic material through gradient

optimization. The performance of non-gradient based

optimizations on the inverse bubble test, as well as

other algorithms is still unknown. A simulation study

can be performed on bubbles originating from shapes

other than a circle to improve the effectiveness at char-

acterizing a particular material parameter.
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