
Weaponizing Favorite Test Functions for Testing Global
Optimization Algorithms: An illustration with the Branin-Hoo

Function

Charles F. Jekel∗ and Raphael T. Haftka†

University of Florida, Gainesville, Florida 32611

Some popular functions used to test global optimization algorithms, such as the Branin-
Hoo and Himmelblau functions, have multiple local optima, all with the same value of the
objective function. That is all local optima are also global optima. This renders them easy
to optimize, because it is impossible for the algorithm to get stuck in a local optimum that
is not the global one. Such functions actually present an opportunity to create challenging
problems for optimization algorithms, because, as illustrated here, it is easy to convert them
to functions with competitive local optima by adding a localized bump at the location of one
of the optima. This process is illustrated here for the Branin-Hoo function, which has three
global optima. We use the popular Python SciPy differential evolution (DE) optimizer for the
illustration, because its wide use is likely to imply a well written code. DE also allows the use of
the gradient-based BFGS local optimizer for final convergence. By making a large number of
replicate runs we establish the probability of reaching a global optimum with the original and
weaponized Branin-Hoo. With the original function we find 100% probability of success with
a moderate number of function evaluations. With the weaponized version, we found that the
probability of getting trapped in a non-global optimum can be made small only with a much
larger number of function evaluations.

I. Nomenclature

ε = Bump width parameter
n = Number of optimization runs
p = Fraction of failure to find global optimum
r = Radial distance for RBF
e = Euler’s constant
x = Design vector
x1 = Design variable 1
x2 = Design variable 2

II. Introduction
There is substantial interest in global optimization algorithms. These include nature inspired stochastic algorithms

like simulated annealing, genetic and differential evolution (DE) algorithms, particle swarm optimization, and ant
colony optimization. They include also deterministic global optimizers like DIRECT [1] and SHGO [2], and more
recently, there has been substantial development in surrogate based adaptive sampling algorithms such as EGO [3, 4].

Many test functions are used for tuning these algorithms, and a substantial list may be found in Wikipedia
https://en.wikipedia.org/wiki/Test_functions_for_optimization. While some of these functions have
complex shapes, few have local optima that are competitive with the global optimum. That means that the probability
that the algorithm will be trapped in a local optimum is low. In fact, some of the popular ones, like the Branin-Hoo
function, the Himmelblau function, and the Hölder table function even more extreme situation. They have multiple
local optimal, but all with the same value. That is, all their local optimal are global! This means that the probability of

∗PhD Candidate, Department of Mechanical and Aerospace Engineering.
†Emeritus Distinguished Professor, Department of Mechanical and Aerospace Engineering, AIAA Fellow.

1

https://en.wikipedia.org/wiki/Test_functions_for_optimization


being trapped in a local non-global optimum is zero, and in addition finding a global optimum is easy because there are
several to choose from.

One objective of this abstract is to provide an easy-to use tool with its Python code to convert these functions to more
challenging problems with the global optimum being accompanied by competing local optima. This is done by adding a
radial-basis-function (RBF) bump to one of the global optima with the Branin-Hoo function used for illustration. A
second objective is to illustrate how this makes the optimization much more challenging for a popular Python differential
evolution optimizer in SciPy.

III. The Branin-Hoo Function
Using the information from https://www.sfu.ca/~ssurjano/branin.html the Branin-Hoo function is defined

as
f (x) = a(x2 − bx2

1 + cx1 − d)2 + s(1 − t) cos(x1) + s. (1)

We use the recommended values a = 1, b = 5.1/(4π2), c = 5/π, d = 6, s = 10, t = 1/(8π). The domain is here as usual,
x1 ∈ [−5, 10], x2 ∈ [0, 15], and the function is shown in Fig. 1.

x1

4 2 0 2 4 6 8 10

x 2

0
2

4
6 8101214

f(x
1,

x 2
)

0
35
69
103
137
171
206
240
274
308

50

100

150

200

250

Fig. 1 Branin-Hoo function.

The function has three global optima. At each optimum the function value is f (x) = 0.398. The locations of the
optima are

First: x = (−π, 12.275) (2)
Second: x = (π, 2.275) (3)

Third: x = (9.42478, 2.475) (4)

where the first optimum is referred to as optimum 1 in this text.

IV. The Bump
It is desirable to add (for maximization) or subtract (for minimization) a bump to the original function that will not

change the location of an optimum. Radial basis functions (RBF) [5] are selected because they depend only on the
distance from the optimum. In addition, it is desirable that the bump will affect only one optimum, and for that the RBF

2

https://www.sfu.ca/~ssurjano/branin.html


bump function https://en.wikipedia.org/wiki/Radial_basis_function is selected. The bump function is
defined as

ϕ(r) =

{
exp

(
− 1

1−(εr)2
)

r < 1
ε

0 r ≥ 1
ε

(5)

Here r is the radial distance from the center of the bump, and its maximum value at r = 0 is 1/e = 0.3679. The width of
the bump is determined by ε. Figure 2 shows a one-dimensional slice of the Branin-Hoo function with 10ϕ(r) subtracted
at the location of one of its global optima.

Fig. 2 A 1D slice through the Branin-Hoo function for x1 = −π with the bump defined by Eq. 5 multiplied by 10
subtracted at the location of location of one of its global optima at x1 = −π, x2 = 12.275. The width parameters
are ε = 1 and ε = 2.

V. Differential Evolution Algorithm with BFGS Follow-up in SciPy
Differential evolution (DE) [6] is a popular global optimization algorithm loosely inspired by evolutionary processes

observed in nature. The algorithm attempts to find a design vector of real numbers that minimizes a blackbox function.
The objective function does not need to be differentiable or continuous. The implementation of DE used in this work is
available in the Python SciPy ecosystem [7]. This implementation was chosen for rich features (parallelization, LHS
initial design, L-BFGS-B follow up, etc.), simplicity, and wide availability.

Like most global search algorithms, once the algorithm gets close to the global optimum the final convergence is
slow. SciPy therefore offers the option of switching to a local gradient based optimizer, BFGS, for this ‘polish’ phase.
The number of function evaluations in the DE search is determined by the maximum number of iterations, max_iter and
the population size pop. Once this phase is finished, the BFGS algorithm is run to convergence. Note that by specifying
a small population size and a small maximum number of iterations, the SciPy function will be using BFGS for most of
the search.

A. Performance Measurement
DE is a stochastic algorithm, so that every time it is run one can get a different result. Therefore, when comparing

the performance with and without a bump, we make multiple runs and compare the fraction of failure deduced from the
percentage of runs that fail to reach the optimum with some given tolerance. Here we need to choose the number of
runs, which is designated as n needed for some desired accuracy in the estimated fraction of failure.

3

https://en.wikipedia.org/wiki/Radial_basis_function


The accuracy of the fraction of failure estimate is measured here by the standard deviation of the number of runs that
failed. It is easy to show that the standard deviation σfail of the number of failures in n runs is related to the probability
of failure p as

σfail = p
√

pn(1 − p). (6)

If we want accuracy to one percent of the total number of runs, we set σfail = 0.01n and calculate the required number
of runs for a given p.

(0.01n)2 = p3n(1 − p) ⇒ n = 104p3(1 − p) (7)

Since we do not know p ahead of time, we observe that the maximum required n is attained for p = 0.75, which gives
n = 1055 runs. Since p = 0.75 is the worst case, we rounded n to 1, 000 for ease of translating the number of failures to
percentages.

B. Performance with No Bump
The DE algorithm was run first with the original Branin-Ho function for large number of times with for different

population sizes (pop) and different numbers of maximum iterations (max_iter) with and without the BFGS polish.
No convergence criteria were applied, so the optimization stopped with a number of function evaluations equal to
2*pop*(max_iter+1). The optimization run was deemed successful if the optimized function value was within 0.01 of
the true optimum. We recorded the fraction p of failed runs, as well as how many were at or near (within a distance of
one) from each optimum. This would help understand the behavior with a bump later on. Note that the closest optima,
Optimum 2 and Optimum 3 are at a distance of about 6.3 from each other.

We also made the same runs with the BFGS polish turned on to improve local convergence. This time all runs were
successful, since all optima have the same value, but again we recorded how many were at each optimum.

Table 1 provides a summary of the results. As expected by Equation 1.4 and the discussion following the equation,
with 1,000 runs the percentage results were mostly repeatable with a different random seed to about 1-2% accuracy.
That is, if the percentage of failures is reported for example as 46%, when repeated with a different seeds it may range
from 44% to 48%.

Table 1 Performance of algorithms for the original Branin-Hoo function without a bump. Results are based
on 1,000 replicate runs, and repeating the runs with different random seed indicates that the numbers are good
to about 1% accuracy, as predicted by Eqs. 6 and 7.

Algorithm Pop Max_iter Percent failures Average number of Percentage at or
(%) function evaluations near each optimum (%)

DE 10 20 0.1 420 30, 44, 25
DE 10 10 46 220 27, 49, 24
DE/BFGS 10 10 0 240 27, 49, 24
DE 5 5 98 60 15, 37, 22
DE/BFGS 5 5 0 84 27, 45, 29
DE 2 2 100 15 7, 10, 6
DE/BFGS 2 2 0 42 30, 35, 35

The first row in Table 1 shows that we can reach very low probability of missing a global optimum with 420 function
evaluations, as only one optimization out of 1,000 failed. We also see that the DE favors the centrally positioned
Optimum 2 compared to the other two. The second row shows that if we reduce the number of iterations to 10, almost
half of the runs fail, but they all get within a distance of 1 from an optimum. That is, the failure is in the local convergence.
Failed local convergence is supported by row 3, which shows that no failures occur if we add the BFGS follow-up. The
average number of function evaluations is 240, with 220 coming from the DE part and 20 from the BFGS follow-up.
With a population of 5 and maximum number of iterations equal to 5, 98% of the runs fail if we use only DE. Still 74%
(15+37+22) make it to the vicinity of one of the optima. Adding BFGS reduces the number of failures to zero for an
average cost of 84 function evaluations. Sixty of these come from the DE and 24 from the BFGS. This still may be
viewed as a case where the two algorithms share the work.

4



The last row in Table 1 looks at a case where we use the BFGS to do almost all the work. With a population of 2 and
max number of iterations equal to 2 all runs fail, and only 23% get near one of the optima. When we add BFGS, they all
converge with an average cost of 42 function evaluations. This time we see that when BFGS does most of the work the
three optima have similar probabilities of being selected, while Optimum 2 was preferred in the previous runs where DE
performed most of the work.

C. Performance with Bump at the First Optimum
The procedure described with no bump was repeated with the wider bump shown in Fig. 2, that is for an amplitude

of 10/e, with ε = 1. The results when the bump was added to Optimum 1 are summarized in Table 2.

Table 2 Performance of algorithms when a bump is added to Optimum 1 Results are based on 1,000 replicate
runs and repeating the runs with different random seed indicates that the numbers are good to about 1%
accuracy as predicted by Eqs. 6 and 7.

Algorithm Pop Max_iter Percent failures Average number of Percentage at or
(%) function evaluations near each optimum (%)

DE 10 20 64 420 36, 39, 25
DE 20 10 89 440 46, 34, 20
DE/BFGS 20 10 54 458 46, 34, 20
DE 40 5 98 480 56, 27, 17
DE/BFGS 40 5 43 500 56, 27, 17
DE 50 4 99 500 57,22, 21
DE/BFGS 50 4 43 522 57,22,21
DE 80 5 96 960 71, 14, 15
DE/BFGS 80 5 29 980 71, 14, 15
DE/BFGS 100 4 26 1021 74, 14, 12
DE/BFGS 125 3 19 1022 82, 8, 10
DE/BFGS 165 2 16 1013 84, 7, 9
DE/BFGS 330 2 4 2002 96, 2, 2

The first row of Table 1, with a population of 10 and 20 iterations with DE alone had only one failure out of
a thousand runs when run without a bump. This was due to the fact that with 20 iterations DE can achieve final
convergence, and it did not matter which optimum it converged to. With the bump, Table 2 shows 64% failures, because
the percentage of runs that converged to Optimum 1 was 36%. Note that without the bump, as can be seen from Table 1,
only 30% of the runs converged to Optimum 1.

Increasing the number of iterations, or adding BFGS does not help, because the runs are already converged, so we
next increase the population size to 20 and reduced the number of iterations to 10 to get a similar cost. The second row
in Table 2 shows that this increased the percentage of runs that went to the bump (Optimum 1) to 46%. The percent
failure increased to 89% because 10 iterations were not close enough for final convergence. However, here adding BFGS
(row 3) caused all of these 46% runs to converge to Optimum 1, reducing the percent failures to 54%.

Based on the results in Table 1, even 5 iterations were enough to get DE close to the optima, so we next tried a
population of 40 with 5 iterations. This increased the percentage of runs near Optimum 1 to 56%. With DE alone
98% of the runs failed because of lack of final convergence, but adding BFGS we realized the 56% rate of success,
or 44% failure. The average number of function evaluations, shows that adding BFGS increases the cost by about 20
evaluations, in line with what we saw without the bump in Table 1.

Additional experimentation showed that as the population size increases, the optimum number of iterations decreases.
This is due to the two dimensional nature of the problem that creates a high probability that the initial population, placed
randomly, will have a member inside the bump.

The total area of the design space is 15× 15 = 225. The bump covers a circle of radius 1, so that its area is equal to π.
The probability that a member of the population will be inside the bump area is π/225 or about 1.4%. The probability
that it will outside is about 98.6%. However, with a population size of pop, the probability that not even one member of

5



the population will fall inside the bump is 0.986pop. When pop = 165, this probability is 9.8%, so there is more than
90% chance that one member of the initial population will be inside the bump, and several other members very close to
the bump.

Comparing Table 1 to Table 2 demonstrates that adding the bump increases the required number of function
evaluations by more than one order of magnitude. It may be also reasonable to speculate that for functions with large
number of variables, the effect will be larger, because the bump will cover a much smaller percentage of the volume of
the design space.

VI. Concluding Remarks
Global optimization algorithms are often tested on easy functions with multiple identical-valued optima. This

abstract suggests that these functions could be weaponized to become much harder by adding or subtracting a bump
to one of the optima. This is illustrated for the Branin-Hoo function, which has three identical-valued global optima
by examining the performance of the Python SciPy popular differential evolution (DE) optimizer with a follow up
by the BFGS local gradient based algorithm. It is shown that adding the bump to the first optimum increases the
required computational effort by about a factor of 16. The Python code to perform this study is available online at
https://github.com/cjekel/weaponizing_test_functions .

Acknowledgments
C. F. Jekel thanks the University of Florida Graduate Preeminence Award and the U.S. Department of Veterans

Affairs Educational Assistance for funding his PhD research.

References
[1] Jones, D. R., Perttunen, C. D., and Stuckman, B. E., “Lipschitzian optimization without the Lipschitz constant,” Journal

of Optimization Theory and Applications, Vol. 79, No. 1, 1993, pp. 157–181. https://doi.org/10.1007/BF00941892, URL
http://link.springer.com/10.1007/BF00941892.

[2] Endres, S. C., Sandrock, C., and Focke, W. W., “A simplicial homology algorithm for Lipschitz optimisation,” Journal of Global
Optimization, Vol. 72, No. 2, 2018, pp. 181–217. https://doi.org/10.1007/s10898-018-0645-y, URL https://doi.org/10.1007/
s10898-018-0645-y.

[3] Jones, D. R., Schonlau, M., and Welch, W. J., “Efficient Global Optimization of Expensive Black-Box Functions,” Journal of Global
Optimization, Vol. 13, No. 4, 1998, pp. 455–492. https://doi.org/10.1023/A:1008306431147, URL https://doi.org/10.1023/A:
1008306431147.

[4] Zhang, Y., Kristensen, J., Ghosh, S., Vandeputte, T., Tallman, J., and Wang, L., “Finding Maximum Expected Improvement
for High-Dimensional Design Optimization,” AIAA Aviation 2019 Forum, AIAA AVIATION Forum, American Institute of
Aeronautics and Astronautics, 2019. https://doi.org/doi:10.2514/6.2019-2985, URL https://doi.org/10.2514/6.2019-2985.

[5] Broomhead, D. S., and Lowe, D., “Radial basis functions, multi-variable functional interpolation and adaptive networks,” Tech.
rep., Royal Signals and Radar Establishment Malvern (United Kingdom), 1988.

[6] Storn, R., and Price, K., “Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous
Spaces,” Journal of Global Optimization, Vol. 11, No. 4, 1997, pp. 341–359. https://doi.org/10.1023/A:1008202821328, URL
https://doi.org/10.1023/A:1008202821328.

[7] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser,
W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E.,
Kern, R., Larson, E., Carey, C., Polat, İ., Feng, Y., Moore, E. W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and Contributors,
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods, Vol. 17, 2020, pp. 261–272.
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2.

6

https://github.com/cjekel/weaponizing_test_functions
https://doi.org/10.1007/BF00941892
http://link.springer.com/10.1007/BF00941892
https://doi.org/10.1007/s10898-018-0645-y
https://doi.org/10.1007/s10898-018-0645-y
https://doi.org/10.1007/s10898-018-0645-y
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1008306431147
https://doi.org/doi:10.2514/6.2019-2985
https://doi.org/10.2514/6.2019-2985
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/https://doi.org/10.1038/s41592-019-0686-2

	Nomenclature
	Introduction
	The Branin-Hoo Function
	The Bump
	Differential Evolution Algorithm with BFGS Follow-up in SciPy
	Performance Measurement
	Performance with No Bump
	Performance with Bump at the First Optimum

	Concluding Remarks

