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Design optimization for Richtmyer–Meshkov instability suppression at
shock-compressed material interfaces
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(Dated: 8 July 2022)

The Richtmyer–Meshkov instability (RMI) is a phenomenon that occurs at the interface of two substances
of different densities due to an impulsive acceleration, such as a shock wave passing through this interface.
Under these conditions, the instability can be seen as interface perturbations begin to grow into narrow jets
or spikes of one substance that propagate into the other. In some cases, this interface may involve an elastic-
plastic material, which can play a significant role in the development and behavior of the RMI. The ability to
effectively control RMI jetting and spike growth is one major limiting factor in technological challenges, such
as inertial confinement fusion, that involve using high-pressure shock waves to implode a fuel target. The
propagation of RMI growth can lead to increased asymmetry in this implosion process and significantly reduce
the obtained energy yield. We use hydrodynamics simulations of impactor shock-compression experiments
and methods based in design optimization to suppress RMI spike growth by altering the geometry and other
properties of a shock-compressed elastic-plastic material target that shares an interface with atmospheric
air. These hydrodynamics simulations use an arbitrary Lagrangian–Eulerian method with a high-order finite
element approach. Our results demonstrate that RMI suppression can be achieved by intentionally creating
a separate upstream interface instability to counteract the growth of long narrow RMI spikes at an interface
with initial perturbations.
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I. INTRODUCTION

The interface between two distinct fluids of different
densities is generally conducive to the generation of un-
stable fluid motion. For the specific case in which this in-
terface is impulsively accelerated (e.g., from the passage
of a shock wave), this unstable fluid motion is referred
to as the Richtmyer–Meshkov instability (RMI). Under
these conditions, perturbations in the interface begin to
grow due to the RMI, which leads to the propagation
of jets or spikes of the denser substance into the fluid of
lower density. RMI is prevalent in both natural processes,
such as supernova explosions1,2, as well as in technolog-
ical settings such as inertial confinement fusion (ICF)
applications3–7. The burning plasma that was recently
produced by Zylstra et al.7 in their landmark study rep-
resents a major step forward in the field of ICF. How-
ever, there are still several major challenges involved in
attaining self-sustaining fusion energy. One major chal-
lenge encountered in ICF experiments, which generally
use high-pressure shock waves to compress a fuel target,
is asymmetry from mixing of the fuel with the surround-
ing capsule material during the implosion process. This
mixing is often caused by instabilities such as RMI, which
can be seeded by imperfections in the fuel capsule. The
mixing of fuel with the surrounding capsule material can
significantly reduce the energy yield of these experiments.

a)Electronic mail: sterbentz2@llnl.gov
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Thus, the suppression of perturbation growth caused by
RMI is an important, yet challenging, goal.

In many applications, the denser substance at the in-
terface of interest may be an elastic-plastic material (i.e.,
a solid). Under high stresses and strain rates, a solid
can significantly deform and exhibit fluid-like behavior,
which includes the development of instabilities such as
RMI. For RMI at interfaces that initially involve a solid,
the elasticity and yield strength of the solid can play a
major role in the propagation of RMI spike growth. At a
certain point, material elasticity and strength can stabi-
lize the RMI and arrest further spike growth8. Under cer-
tain circumstances, RMI spike growth may continue until
these spikes rupture and form ejecta. The extreme pres-
sure and temperature changes that occur during shock-
wave compression can also lead to phase transitions (e.g.,
melting), which may further complicate unstable RMI
behavior. Several experimental studies have investigated
RMI involving a solid material to study material proper-
ties at extreme pressures and strain rates9–12. Theoreti-
cal and computational studies have also been conducted
to provide a mechanistic understanding of RMI involv-
ing elastic-plastic materials. The landmark work of Piriz
et al.8 describes an analytical model for characterizing
RMI growth at solid–vacuum interfaces. Their model
provides scaling laws for predicting the maximum am-
plitude growth of the RMI spikes and showed that this
amplitude is inversely proportional to the yield stress of
the solid material. Dimonte et al.13 built on the work
of Piriz et al. by developing a scaling law for predicting
RMI spike amplitude growth. This scaling law can also
be used to infer the yield stress of a material by measur-
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ing the RMI spike amplitude growth. The more recent
work of Chen et al.14 provides an analytical description
of the dependency of elastic–plastic RMI perturbation
growth on the Atwood number, a dimensionless number
that describes the relative densities of the materials at
the interface (we describe the Atwood number in more
detail in the Methodology section of this paper).

These experimental and theoretical studies help pro-
vide a mechanistic understanding of RMI involving
elastic–plastic materials occurring under various condi-
tions. However, an effective method for suppressing RMI
perturbation growth remains difficult to achieve. Sev-
eral methods have previously been proposed for suppress-
ing RMI perturbation growth. These include using mag-
netic fields to stabilize the RMI and prevent perturbation
growth15–17 when a plasma is present at the interface.
Alternatively, Sano et al.18 propose using a density tran-
sition layer at the interface to suppress RMI. This density
transition layer provides a continuous transition between
the densities of the materials at the interface and appears
to be effective at suppressing perturbation growth if a
sufficiently thick transition layer is used. These methods
for suppressing RMI perturbation growth tend to require
specific conditions to be present and are not necessarily
applicable to all applications involving RMI. Several re-
cent studies, such as those of Henry de Frahan et al.19,
Feng et al.20, and Liang et al.21–23 have investigated RMI
in scenarios involving several layers of different density
fluids with coupled interfaces. These studies have focused
on analyzing the effect of upstream interfaces with per-
turbations that create reverberating shock waves inside
the fluid layers and have found that RMI and other hy-
drodynamic instabilities can be enhanced or suppressed
in this manner.

For this study, we propose using a shape optimization
approach24 to reduce or suppress the RMI spike growth
of a solid target material (with an initially perturbed sur-
face in contact with atmospheric air) undergoing shock-
wave compression. Our design optimization focuses on
modifying the geometry of the target that is upstream of
the initially perturbed interface where the primary RMI
spike growth occurs. Note that we do not simply alter
the geometry of the initially perturbed interface, as it
may not be possible or practical to alter this interface
in various engineering applications. For instance, this
perturbed interface may arise in an engineering scenario
from a limitation in manufacturing methods or may have
desirable properties for a specific application. Our com-
putational study demonstrates that reduction and par-
tial suppression of RMI spike growth is achievable under
specific conditions. The optimized designs that we have
developed suppress RMI perturbation growth by inten-
tionally generating another RMI that occurs upstream of
the initially perturbed interface, which appears to coun-
teract unstable spike growth at the interface of interest.
We refer to this intentionally produced RMI as the recti-
fying RMI. We also investigate the underlying dynamics
of why our optimized designs are effective at suppressing

RMI spike growth by considering shock-wave behavior
(such as reverberating shock waves) and vorticity depo-
sition in the target material.

II. METHODOLOGY

A. Richtmyer–Meshkov instability characteristics

In this section, we describe several characteristics of
the RMI that are important for understanding the meth-
ods that we use for suppressing this instability. We con-
sider the case where the impulsive acceleration that gen-
erates the RMI is caused by an incident shock wave mov-
ing in a normal direction to the initially perturbed in-
terface (i.e., the x-direction in Figure 1). One common
description of the mechanism that leads to RMI pertur-
bation growth comes from considering vorticity deposi-
tion ~ω as the incident shock wave refracts at the per-
turbed interface. Note that vorticity represents the curl
of the velocity vector (i.e., ~ω = ∇×~u). This vorticity de-
position generates counterclockwise (positive) vorticity
on one side of an interface perturbation and clockwise
(negative) vorticity on the other side of the perturbation
(see diagrams in Figure 1)25,26. This vorticity imbalance
causes the interface perturbations to deform, leading to
RMI perturbation growth. For single-mode perturba-
tions, this perturbation growth generally occurs as long
narrow jets or spikes with a rounded bubble structure in
between these spikes as shown in Figure 1.

The general behavior of RMI perturbation growth at
an interface is strongly dependent on a dimensionless ra-
tio known as the Atwood number. The Atwood number
quantifies the difference in density between the two in-
terface substances prior to shock loading and is defined
as14,26

A =
ρ2 − ρ1

ρ2 + ρ1
, (1)

where ρ1 is the density of the upstream material through
which the shock wave is initially moving and ρ2 is the
density of the other substance or material at the inter-
face. If the magnitude of the Atwood number is close to
unity (i.e., |A| ≈ 1, which is the case for solid–vacuum in-
terfaces), this indicates a large difference in the density of
the two substances or materials. If the magnitude of the
Atwood number is close to zero (i.e., |A| ≈ 0), the den-
sities of the materials are approximately equal and this
generally represents a more stable configuration. The de-
velopmental behavior of RMI spike growth is dependent
on the Atwood number. For instance, if A > 0, then
the interface perturbation spikes simply grow in the x-
direction toward the lower-density material as shown in
Figure 1(a). However, if A < 0, a phase inversion occurs
as the perturbations begin to deform as shown in Fig-
ure 1(b) and it is these phase-inverted spikes that grow
into the lower-density material26. For our analysis, we fo-
cus on suppressing RMI spike growth in scenarios where
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the density of the upstream material ρ1 is significantly
greater than the density of the other substance at the
interface ρ2 (i.e., scenarios where A ≈ −1).

(a)

(b)

FIG. 1: The unstable behavior at the interface (due to
the RMI) is highly dependent on the relative densities
between the materials at the interface, which is
encapsulated in the dimensionless Atwood number A
[see definition in Equation (1)]. For both cases, spikes of
the denser material propagate in the x-direction toward
the less dense material. If A > 0, no inversion of the
interface perturbations occurs. Note that the curled
arrows represent the general direction of the vorticity ~ω,
which plays a major role in RMI spike growth. The
variables ρ, Z, and us are the initial density (prior to
shock loading), shock impedance, and shock velocity
magnitude, respectively: (a) Atwood number is positive
(A > 0) and no perturbation inversion occurs after
shock wave passage; (b) Atwood number is negative
(A < 0) and a perturbation inversion occurs.

Additionally, the shock impedance of the materials at
the interface plays a crucial role in the shock-wave behav-

ior and corresponding vorticity deposition. The shock
impedance of a given material is defined as Z = ρius,
where ρi is the initial density (prior to shock loading)
of the material and us is the shock velocity magnitude
within the material. According to Nellis et al.27, if we
define Z1 as the impedance of the upstream material
(through which the shock wave is initially moving) and
Z2 as the impedance of the downstream material, then
the following is true. If Z1 < Z2, then the shock wave is
at least partially reflected when it reaches the interface
between the two materials and reverberates back through
material Z1 at higher pressure. Otherwise, if Z1 > Z2,
then a rarefaction wave is produced in material Z1 when
the shock wave reaches the interface and the pressure is
isentropically released. This concept will be important in
understanding the shock-wave behavior and correspond-
ing vorticity deposition for our results in Section III.

B. Simulation setup

The simulation setup that we consider in our analy-
sis involves a high-velocity copper impactor striking a
stationary copper target to generate a shock wave that
passes through the target. We generally use an impactor
velocity of Vi = 0.2 cm/µs in our simulations. The cop-
per target is in contact with air on the side of the tar-
get opposite to the side where the impact occurs [see
diagram in Figure 2(a)] and has an Atwood number of
A ≈ −1. For convenience, we will henceforth refer to
the side of the target struck by the impactor as the left-
hand side and to the opposite side of the target as the
right-hand side. The right-hand side of the target in-
cludes non-smooth perturbations along the interface with
the air. For these initial perturbations, we have chosen
to use a periodic single-mode sinusoidal profile. Dur-
ing compression, these perturbations first invert phase
and then begin to grow after the shock passes through
the copper–air interface on the right-hand side of the
target. The conditions chosen for these simulations are
similar to gas-gun dynamic-compression experiments be-
ing conducted at the High Explosives Application Facil-
ity (HEAF) at Lawrence Livermore National Laboratory
(LLNL) and the Dynamic Compression Sector user facil-
ity at Argonne National Laboratory28,29. These experi-
ments are currently ongoing and will be published in a
future article.

The dimensions of the copper impactor and target
in our simulations are listed in Table I. Note that in
our simulations, we use Nr = 10 perturbation periods
on the right-side of the target and zero-velocity (rigid
wall) boundary conditions in the y-direction on the top
and bottom sides of our simulation domain. While we
could also have used periodic boundary conditions with
Nr = 1 in our simulations, we wanted to investigate po-
tential edge effects. However, we found the edge effects
to be largely negligible in our simulations (see simula-
tion density plot in Figure 3). For this reason, we only
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TABLE I: Dimensions of impactor–target setup used in
our two-dimensional simulations.

Dimension [mm]

Setup Diameter 45.0

Impactor Thickness 10.0

Target Thickness 5.0

Perturbation Amplitude 0.5

Perturbation Period 4.5

show a reduced number of perturbation periods (e.g.,
Nr = 2) for our simulation results in Section III. For
the left and right sides of our simulation boundaries, we
use zero-velocity boundary conditions in both the x- and
y-direction.

Our two-dimensional simulations are constructed us-
ing the hydrodynamics code MARBL30,31, developed at
LLNL, which numerically solves the conservation of mass,
momentum, and energy equations. MARBL is an arbi-
trary Lagrangian–Eulerian code that uses a high-order
finite element approach to increase accuracy of the nu-
merical calculations32. For the materials in our simula-
tions, we use the Livermore Equation of State (LEOS)
library, which was also developed at LLNL. The mate-
rial equations of state for copper, air, and lucite (a low-
density plastic resin that we use in some of our simula-
tions) come from LEOS tables 29033, 2260, and 5070,
respectively. They are based on the quotidian equa-
tion of state with extension formalism34,35. For copper,
we use the Steinberg–Guinan strength model36 with a
shear modulus of 0.477 Mbar, an initial yield stress of
1.2× 10−3 Mbar, and a maximum work hardening stress
of 6.4× 10−3 Mbar. We neglect the strength of lucite in
our simulations.

For the hydrodynamics simulations used in our study,
we use a largely uniform mesh of approximately 83,000 el-
ements with a grid spacing of ∆x = 0.0208 cm in both the
x- and y-directions. We found a maximum difference of
only approximately 2% between the RMI spike growth at
this mesh resolution and at higher resolutions, which in-
dicates that our simulations are largely converged. In Ap-
pendix A, we also compare simulation results using this
setup to the scaling law developed by Dimonte et al.13 to
demonstrate that the material models we use (e.g., the
strength and failure models for the copper impactor and
target) are accurately capturing the RMI behavior in the
high-pressure regimes that we consider.

C. Design parameterization

Now that we have described our simulation setup, we
outline the methodology that we use for reducing and
suppressing RMI spike growth. For our study, we focus

(a)

(b)

FIG. 2: The simulation setup used in our analysis. A
high-velocity impactor is launched toward a copper
target with a given initial velocity. This impact
generates a shock wave that passes through the target,
which has a perturbed interface on the right-hand side:
(a) The initial configuration of the setup showing the
perturbed interface just prior to impact; (b) After the
shock wave passes through the perturbed interface, the
RMI leads to an inversion of the troughs of the
perturbed interface, which then begin to grow into thin
spikes. The peaks of the initially perturbed interface
form into structures that we refer to as bubbles.
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FIG. 3: Density plot for the baseline simulation that we
use in our analysis at 7 µs after the impact occurs. This
plot shows RMI spike growth for all Nr = 10 periods
used in our simulation. As is clear from the plot, the
RMI spikes near the upper and lower edge of the
simulation domain appear to be unaffected by any edge
effects due to the zero-velocity boundary conditions.

on investigating designs that involve modifying the ge-
ometry of the left-hand side of the target. This allows
us to tune the dynamics of the shock wave and response
of the target material to the shock wave. The geome-
try of the right-hand side of the target, which includes
the initial perturbations that seed the RMI, remains un-
changed in our simulations. As previously discussed, it
may be necessary or unavoidable for a specific engineer-
ing application to have these perturbations, but highly
undesirable for RMI spike growth to occur because of
these perturbations.

One promising parameterization that we have devel-
oped is to use piecewise cubic Hermite interpolating poly-
nomials (PCHIP) to shape the geometry of the left-hand
side of the target. For this parameterization, we se-
lect several equidistant adjustment points along the axis
parallel to the left-hand side of the target (i.e., the y-
direction) yk, k = 0, 1, 2, · · · , N as well as corresponding
x-direction values at these points f(yk) = fk. Between
these adjustment points, we interpolate using a polyno-
mial equation of the following form

f(y) = H00(t)fk +H10(t)(yk+1 − yk)f ′k
+H01(t)fk+1 +H11(t)(yk+1 − yk)f ′k+1

(2)

where t = (y − yk)/(yk+1 − yk) and Hij(t) are Hermite
basis functions and are defined as

H00(t) = 2t3 − 3t2 + 1,

H10(t) = t3 − 2t2 + t, (3)

H01(t) = −2t3 + 3t2,

H11(t) = t3 − t2.

In Equation (2), the f ′k term represents the slope at each
of the points yk. For our application, we have chosen to
preserve monotonicity between the yk points using the
method developed by Fritsch and Carlson37 and set this
slope equal to

f ′k =
w1 + w2

(w1/dk−1) + (w2/dk)
(4)

where hk = yk+1−yk and dk = (xk+1−xk)/hk represents
the internal slopes at each point yk. The variables w1

and w2 are weighting factors and are set equal to w1 =
2hk + hk−1, and w2 = hk + 2hk−1. If the slopes dk and
dk−1 are opposite in sign or one of them is equal to zero,
then f ′k is simply set equal to zero.

Using the selected adjustment points yk, the corre-
sponding values fk, and interpolating between these
points using Equations (2) and (4), we can construct a
half wavelength profile, which can then be mirrored to
produce a full wavelength profile. This profile is then re-
peated to produce a periodic interface on the left-hand
side of the target, which we refer to as a PCHIP profile.
Figure 4 shows what a single period of a potential PCHIP
profile may look like for four yk points. This allows us
to create a periodic wave profile that can achieve many
different wave profile shapes that depend on the values
chosen for fk. The PCHIP profile also preserves mono-
tonicity between the yk points and is first derivative con-
tinuous. An alternative parameterization method that
we have also tried is to interpolate between the adjust-
ment points yk using simple linear interpolation rather
than PCHIP polynomials. Piecewise linear interpolation
produces a less complex profile on the left-hand side of
the target that is simpler to manufacture using standard
machine tools (e.g., for an experiment) because it only
uses straight lines to produce the profile. We show an
optimized result in Section III that uses piecewise lin-
ear interpolation in addition to results that use PCHIP
interpolation.

Note that these profiles create gaps or cavities between
the target and the impactor (see Figure 4) that can be
filled with either air or another material. We typically
fill these cavities in our simulations using lucite, a low-
density plastic resin, that helps maintain numerical sta-
bility. However, the difference in the final results between
using air or lucite to fill these cavities is generally small.

Using the PCHIP profile (or alternatively the piece-
wise linear profile), we can select several parameteriza-
tions to generate our design space. For our study, we
adjust four values [i.e., f(y0), f(y1), f(y2), and f(y3)]
and the number of periods on the left-hand side of the
target Nl (or equivalently the wavelength of the repeated
profile). Note that we equidistantly space the four points
yk such that they span an entire half period. This creates
a total of five parameters for our design space that can
be optimized to reduce or suppress RMI spike growth.
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(a)

FIG. 4: The PCHIP profile is created by selecting
values f(yk) corresponding to each of the adjustment
points yk and interpolating between these points to
create a smooth, first-derivative continuous profile. We
use four adjustment points (i.e., y0, y1, y2, and y3) to
create this profile. The PCHIP profile is applied to the
left-hand side of the target (i.e., the side struck by the
copper impactor). We place tracer particles on the
right-hand side of the target to measure the spike
amplitude hsp and bubble amplitude hbu. We use these
amplitudes to quantify RMI spike growth using the
objective function of Equation (5). The materials used
in our simulations are also labelled in the figure
diagram. The cavities (created by the PCHIP profile)
between the impactor and target are filled with either
air or another material. We use lucite plastic resin to
fill this space in our simulations.

D. Design optimization problem

For the design optimization analysis, we must first de-
fine a performance metric or objective function that we
intend to minimize such that RMI spike propagation is
reduced or suppressed. One objective function that we
have selected for this purpose is

φ =
1

Nr

Nr∑
i=1

|hsp,i − hbu,i|, (5)

where Nr is the number of periods of the initial pertur-
bations on the right-hand side of the target, hsp,i is the
amplitude of the i-th RMI spike, and hbu,i is the am-
plitude of the i-th RMI bubble. The initial locations of
the tracer particles that we use to determine hsp,i and
hbu,i are shown in Figure 4. The objective function in
Equation (5) represents an average amplitude difference
between RMI spikes and bubbles across all perturbation
periods and is useful for ensuring that the right-hand side
of the target is as flat as possible at a specified time.

For certain applications, it may be desirable to not
only ensure that RMI spike propagation is suppressed,

but also that the target remains as compact as possi-
ble. For this purpose, we have also investigated another
objective function that is useful for maintaining target
compactness by quantifying the deviation from the tar-
get’s center-of-mass, which is computed via

Φ =

[∫
ΩT

ρ (x) (x− x∗)p
]1/p

(6)

where ρ denotes the material density at point x and x∗

denotes the center-of-mass. The integral is computed
only over the target material ΩT . We use a value of
p = 6, which can be considered a soft-max function (i.e.,
a smooth estimate of the maximum deviation of material
about the center-of-mass). A diagram of the properties
that we use in the objective function of Equation (6) is
illustrated in Figure 5. This new metric does not uti-
lize tracers as in the objective function of Equation (5),
but rather it requires images of material density to be
saved to disk and post-processed. This post-processing
involves determining the x location for some finite-sized
volume of the target and the corresponding density ρ(x)
of this volume. This is repeated to cover the entire target
volume ΩT , which allows us to calculate the integral of
Equation (6).

FIG. 5: The properties used in the calculation of the
target compactness metric of Equation (6). The
center-of-mass (in the x-direction) of the target x∗ is
calculated first. The location x and density ρ(x) at
finite-sized volumes throughout the target are then
determined to compute the integral in Equation (6) over
the entire target domain ΩT as explained in the text.

The objective of our optimization is to find the de-
sign that minimizes the objective function [i.e., either
Equation (5) or Equation (6)] at a specific time ∆t after
the impactor strikes the target or minimizes the maxi-
mum objective function value over a specified time du-
ration (e.g., between 0 µs and 7 µs after impact). We
have somewhat arbitrarily set ∆t = 7 µs as the final
time in our analysis. This allows sufficient time for the
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shock wave to pass through the perturbed interface on
the right-hand side of the target and additional time for
RMI spike growth to occur. Another reason that we have
chosen to set the final simulation time equal to ∆t = 7
µs is because the in-progress independent experiments on
which our simulation setup is based generally take mea-
surements up until approximately 7 µs after the impactor
strikes the target.

Our design optimization problem is largely defined by
a mapping between the parameterization of Equation
(2) and the objective function of either Equation (5)
or Equation (6). We presume that this is a smooth,
but not necessarily convex, mapping. The design op-
timization problem is unconstrained other than simple
bounds on the design parameters. We chose the search
bounds for the PCHIP parameters to be within the range
f(yn) ∈ [−0.25 cm, 0.25 cm]. These bounds correspond
to a distance from the left-hand side of the target and
were chosen to be sufficiently small to prevent the tar-
get from becoming too thin and rupturing during the
RMI spike growth phase of the simulation. The pa-
rameter bounds for the number of periods of the profile
on the left-hand side of the target is within the range
Nl ∈ [0.25, 2]Nr where Nr is the number of periods on
the initially perturbed right-hand side of the target. In
summary, our optimization problem can be written in
the standard optimization formula as

min
f0,f1,f2,f3,Nl

φ or Φ

subject to − 0.25 cm ≤ f(y0) ≤ 0.25 cm

− 0.25 cm ≤ f(y1) ≤ 0.25 cm

− 0.25 cm ≤ f(y2) ≤ 0.25 cm

− 0.25 cm ≤ f(y3) ≤ 0.25 cm

Nr/4 ≤ Nl ≤ 2Nr.

(7)

We apply a gradient-free design optimization algorithm
known as differential evolution optimization (DEO) to
the optimization problem defined in Equation (7), which
is described further in Appendix B.

III. RESULTS AND DISCUSSION

A. RMI suppression

We use a hierarchical optimization process that in-
volves two primary stages where a set of parameters are
optimized using the DEO algorithm. The first DEO stage
involves identifying which of the five parameters [i.e., Nl,
f(y0), f(y1), f(y2), f(y3)] play a dominant role in re-
ducing the objective function and which parameters can
simply be set equal to a boundary value. From the first
DEO stage, we found that using Nl = Nr/2 is generally
the most effective for suppressing RMI spike growth. For
most of our design optimization processes, we also found
that setting f(y0) and f(y3) equal to the minimum and
maximum bounds, respectively [i.e., f(y0) = −0.25 cm

TABLE II: The number of parameters D, approximate
number of generations G, and approximate number of
objective function φ evaluations for the two DEO stages
of the hierarchical optimization process that we use.

DEO Stage Parameters
D

Generations
G

Evaluations of φ
10 ·D · (G+ 1)

1 5 ≈ 20 ≈ 1050

2 2 ≈ 15 ≈ 320

and f(y3) = 0.25 cm], appears to be effective for re-
ducing RMI spike growth. This leaves us with only two
parameters for the second optimization stage [i.e., f(y1)
and f(y2)] that we again optimize using the DEO algo-
rithm. The number of parameters D, approximate num-
ber of DEO generations G, and approximate number of
objective function φ evaluations for each DEO stage is
summarized in Table II. Note that the number of objec-
tive function evaluations corresponds to the number of
times the hydrodynamics simulation must be run.

We compare the optimized designs developed using
this optimization hierarchy to the baseline case where the
left-hand side of the target is completely flat. For all den-
sity plots that we show in this section, the density values
map to the color bar shown in Figure 6. Figure 7 shows
density plots for the baseline case at several time instants
after the impactor strikes the target. Figure 7(a) dis-
plays the initial target configuration at the instant that
it is struck by the impactor at ∆t = 0 µs (just prior to
deformation). After ∆t = 1.75 µs, a phase inversion of
the interface perturbations has clearly occurred as shown
in Figure 7(b). At later times [see Figure 7(c)–(e)], the
inverted perturbations continue to grow into long narrow
spikes due to the RMI.

FIG. 6: The density values for the plots in Figures 7–11
map to the color bar in this figure, where blue
represents the minimum density (0.00 g/cm3) and red
represents the maximum density (12.0 g/cm3).

Our optimized designs aim to halt and suppress the
significant RMI spike growth seen in Figure 7. Figure
8 shows density plots (at the same time instances af-
ter impact as in Figure 7) of one of our designs using
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(a)

(b)

(c)

(d)

(e)

FIG. 7: Density plots at several time instants after the
impactor strikes the target (baseline case with no RMI
suppression). There appears to be fairly significant RMI
spike growth: (a) ∆t = 0.0 µs (initial configuration at
impact); (b) ∆t = 1.75 µs; (c) ∆t = 3.50 µs; (d)
∆t = 5.25 µs; (e) ∆t = 7.0 µs.

the DEO algorithm to optimize the PCHIP parameters
f(y1) and f(y2). Equation (5) is used as the objective
function, where this function is minimized at ∆t = 7 µs.
The cavities created by the PCHIP profile are filled with
lucite as previously mentioned. The PCHIP profile on
the left-hand side of the target [see Figure 8(a)] creates
an entirely new RMI, which we refer to as the rectify-
ing RMI. This rectifying RMI is equivalent to a positive
Atwood number (i.e., A > 0) RMI where no perturba-
tion inversion occurs and the spikes grow left towards
the impactor. The vorticity created by this new insta-
bility largely counteracts/overtakes the vorticity on the
right-hand side of the target and halts or redirects RMI
spike growth on this side of the target. We further inves-
tigate shock-wave behavior and vorticity deposition for
our optimized designs in Section III E.

An alternative design is shown in Figure 9. The cavi-

ties between the RMI spikes on the right-hand side of the
target [see Figure 9(c)] are “pinched” together by ∆t = 7
µs. This leads to the largely flat interface seen in Figure
9(e). Similar to the design shown in Figure 8, the design
in Figure 9 also uses the PCHIP parameterization on the
left-hand side of the target and uses a form of the ob-
jective function of Equation (5). However, we make two
modifications to the way that the objective function is
evaluated. Instead of minimizing the objective function
only at ∆t = 7 µs, we minimize the maximum value of the
objective function over the entire time duration between
∆t = 0 µs and 7 µs. This helps maintain a relatively flat
interface on the right-hand side of the target throughout
the simulation. In evaluating the objective function of
Equation (5), we also found it useful to use the average
of every other tracer pair i = 1, 3, 5, . . . , Nr rather than
the average of all tracer pairs i = 1, 2, 3, . . . , Nr as we did
for the design in Figure 8. Using every other tracer pair
appears to be more conducive to producing the “pinch-
ing” effect that we observe for the optimized design in
Figure 9.

Another alternative optimized design that we have
found to work well for suppressing RMI spike growth
on the right-hand side of the target is shown in Figure
10. This design uses piecewise linear segments (instead
of PCHIP) to produce the profile on the left-hand side of
the target and involves using a layer of lucite between the
impactor and the target [see Figure 10(a)]. We again use
the DEO algorithm to optimize two parameters, which
are the thickness of the lucite layer and the angle of the
grooves on the left side of the target. The effect is sim-
ilar to the designs in Figures 8 and 9 where a rectifying
RMI is created with a positive Atwood number. As seen
in Figure 10(e), this design is also fairly effective at sup-
pressing RMI growth on the right-hand side of the target.
Additionally, this design is relatively easy to manufacture
using standard machine tools as previously discussed and
is a good initial candidate for an experimental study.

B. Designing for target compactness

The above results illustrate that RMI, as defined by
the objective function in Equation (5), can be reduced to
near zero by optimizing the profile of the left-hand side
of the target. Note, however, that the results in Figures
8–10 show that the left-hand side of the target becomes
quite distorted as large bubbles form on this side of the
target. This may be inappropriate for some applications.
As a second design experiment, we investigate the tar-
get compactness objective function of Equation (6) in an
attempt to both reduce RMI and also keep the target
relatively compact.

In this new study, the target and impactor materials,
dimensions, and initial velocities are identical to those
in the previous study. Likewise, the same PCHIP pa-
rameterization is used on the left-hand side of the target.
Note that in this study the area (and mass) of the target
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(a)

(b)

(c)

(d)

(e)

FIG. 8: Density plots at several time instants after the
impactor strikes the target of an optimized design that
uses the PCHIP parameterization on the left-hand side
of the target. This design partially suppresses RMI
spike growth on the right-hand side of the target: (a)
∆t = 0.0 µs (initial configuration at impact); (b)
∆t = 1.75 µs; (c) ∆t = 3.50 µs; (d) ∆t = 5.25 µs; (e)
∆t = 7.0 µs.

is kept constant, meaning that the PCHIP polynomial
coefficients are not independent because of a constraint
on the area of the target. The DEO algorithm is again
used to find the optimal design. The final design for this
new study displays some interesting characteristics and
is shown in Figure 11(a). The design has a low-amplitude
high-frequency nature to it, which is quite different than
the previous designs in Figures 8–10. The results at sev-
eral other times are shown in Figure 11(b)–(e). The re-
sults in Figure 11 show that this design has reduced RMI
spike formation compared to the baseline case in Figure
7, although the reduction is not as significant as that in
Figures 8–10. The design in Figure 11 may also be dif-
ficult to manufacture due to its high-frequency nature.
However, the left-hand side of the target no longer has

(a)

(b)

(c)

(d)

(e)

FIG. 9: Density plots at several time instants after the
impactor strikes the target of an optimized design that
uses a piecewise linear parameterization on the
left-hand side of the target. The design in this figure
uses a slightly modified objective function from that
used to produce the results in Figure 8, as explained in
the text. This design largely suppresses any significant
RMI spike growth and creates a “pinching” effect [see
plot in (e)] that produces a relatively flat interface on
the right-hand side of the target: (a) ∆t = 0.0 µs
(initial configuration at impact); (b) ∆t = 1.75 µs; (c)
∆t = 3.50 µs; (d) ∆t = 5.25 µs; (e) ∆t = 7.0 µs.

large bubbles and the target is clearly more compact,
which was the primary design objective.

C. Comparison of design results

Figure 12 provides a more quantitative comparison of
the spike growth on the right-hand side of the target
for the different designs in Figures 7–11 by plotting the
difference between the spike amplitude and the bubble
amplitude (i.e., |hsp − hbu|) of each design. Tables III



Accepted to Phys. Fluids 10.1063/5.0100100

Physics of Fluids 10

(a)

(b)

(c)

(d)

(e)

FIG. 10: Density plots at several time instants after the
impactor strikes the target of an optimized design that
uses a piecewise linear parameterization on the
left-hand side of the target (allowing for a layer of lucite
between impactor and copper target). This design
largely suppresses any significant RMI spike growth and
maintains a relatively flat interface on the right-hand
side of the target (the side opposite to where the
impactor strikes): (a) ∆t = 0.0 µs (initial configuration
at impact); (b) ∆t = 1.75 µs; (c) ∆t = 3.50 µs; (d)
∆t = 5.25 µs; (e) ∆t = 7.0 µs.

and IV show |hsp−hbu| and the percent reduction for the
designs in Figures 7–11 at 7 µs after impact occurs as well
as at 4.5 µs after the phase inversion of the perturbations
occurs. As is clear from Figure 12 and Tables III and IV,
the optimized designs all significantly reduce the RMI
spike growth below that of the baseline case in Figure 7
(i.e., Design 0 in Figure 12).

(a)

(b)

(c)

(d)

(e)

FIG. 11: Density plots at several time instants after the
impactor strikes the target of an optimized design that
uses the target compactness metric defined in Equation
6 as the objective function to be minimized. The
PCHIP parameterization is used for the left-hand side
of the target. This design partially suppresses RMI
spike growth on the right-hand side of the target while
simultaneously suppressing bubble growth on the
left-hand side: (a) ∆t = 0.0 µs (initial configuration at
impact); (b) ∆t = 1.75 µs; (c) ∆t = 3.50 µs; (d)
∆t = 5.25 µs; (e) ∆t = 7.0 µs.

D. Discussion on design optimization results

The designs that result from our optimization process
have several key features. The first key feature is the lu-
cite that fills the cavities created by the optimized profile
on the left-hand side of the target. This low-density lu-
cite creates conditions that are similar to a RMI scenario
where the Atwood number is positive (i.e., ρ1 < ρ2 and
A > 0) and produces the rectifying RMI. For the rectify-
ing RMI that we generate in our simulations, the Atwood
number is equal to A = 0.7657 (where ρ1 = 1.186 g/cm3

for lucite and ρ2 = 8.938 g/cm3 for copper). In cases
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TABLE III: Comparison of the percent reduction in the average value of |hsp − hbu| for the average of all tracer
pairs for the designs in Figures 7–11 at 7 µs after the impact occurs and at 4.5 µs after the phase inversion of the
perturbations occurs. The values in this table correspond to the tracer data in Figure 12(a).

7 µs after impact 4.5 µs after inversion

Design |hsp − hbu| [cm] % Reduction |hsp − hbu| [cm] % Reduction

0 0.6439 0.00% 0.5548 0.00%

1 0.0889 86.19% 0.0922 83.39%

2 0.1863 71.07% 0.1684 69.64%

3 0.1067 83.43% 0.1039 81.27%

4 0.5182 19.52% 0.4785 13.75%

TABLE IV: Comparison of the percent reduction in the average value of |hsp − hbu| for the average of every other
tracer pair for the designs in Figures 7–11 at 7 µs after the impact occurs and at 4.5 µs after the phase inversion of
the perturbations occurs. The values in this table correspond to the tracer data in Figure 12(b).

7 µs after impact 4.5 µs after inversion

Design |hsp − hbu| [cm] % Reduction |hsp − hbu| [cm] % Reduction

0 0.6434 0.00% 0.5544 0.00%

1 0.0363 94.36% 0.0363 93.46%

2 0.0404 93.72% 0.0449 91.90%

3 0.0191 97.04% 0.0161 97.10%

4 0.5143 20.07% 0.4752 14.29%

where A > 0, a perturbation inversion does not occur
as it does for the case where A < 0 (see diagrams in
Figure 1)26. Instead, the protrusions created by the op-
timized profile on the left-hand side of the target begin to
grow into the lower-density lucite. However, these pro-
trusions have very little or no room to grow horizontally
and almost immediately press up against the impactor.
This causes the growing protrusions to immediately start
rolling out or “mushrooming” [see Figure 13(b)]. Never-
theless, these protrusions continue to grow (possibly pen-
etrating into the impactor) and this unstable growth puts
stress on the target material. The lucite cavity region
also has lower shock impedance Z than the copper tar-
get and creates the conditions necessary for compression
waves to reverberate through the target and contributes
to vorticity deposition that produces the rectifying RMI
(we discuss this further in Section III E).

Another key feature of our optimized profiles is a sharp
corner or indentation that protrudes into the target ma-
terial on the left-hand side of the target. This sharp point
acts as a stress concentration point (i.e., the stress in this
region is higher than in the surrounding region in the tar-
get). In a standard RMI scenario, the stress created by
the unstable spike growth leads to the formation of bub-
bles between the spikes. A stress concentration point be-

tween two rectifying RMI spikes (on the left-hand side of
the target) appears to exacerbate the bubble effect, which
creates a relatively large bubble that penetrates deep into
the target as it develops [see Figure 13(b)]. This exacer-
bated RMI bubble has the effect of putting vertical stress
on the perturbations on the right-hand side of the target.
This vertical stress alters the direction of vorticity along
the right-hand side of the target and redirects the veloc-
ity of the growing perturbations on the right-hand side of
the target in a more vertical direction. This counteracts
much of the RMI spike growth that would normally arise
on the right-hand side of the target.

A third key feature is the difference in the number of
periods between the optimized profile on the left-hand
side of the target and the perturbations on the right-
hand side of the target. As previously mentioned, we
found that using half the number of periods on the left-
hand side of the target (i.e., Nl = Nr/2) to be the most
effective for suppressing spike growth on the right-hand
side of the target. This is likely due to the pinching and
flattening effect that the exacerbated bubbles from the
rectifying RMI have on the right-hand side perturbations.
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FIG. 12: Tracer plots for the designs shown in Figure 7
(Design 0, i.e., the baseline case), Figure 8 (Design 1),
Figure 9 (Design 2), Figure 10 (Design 3), and Figure
11 (Design 4). The tracer data in these plots represents
the amplitude difference between the spike and bubble
tracer pairs (i.e., |hsp − hbu|). Note that the data in
these plots has been shifted such that the phase
inversion of the perturbations occurs at time t = 0.0 µs:
(a) Average of all tracer pairs [i.e., i = 1, 2, 3, . . . , Nr in
Equation (5)]; (b) Average of every other tracer pair
(corresponding to where the most significant flattening
of the right-hand side interface occurs) [i.e.,
i = 1, 3, 5, . . . , Nr in Equation (6)].

E. Shock-wave behvaior and vorticity analysis

The shock-wave behavior plays an important role in
the vorticity deposition throughout the target and is nec-
essary for fully understanding why our optimized profiles
are effective at suppressing RMI spike growth. For the
baseline case shown in Figure 7, the shock-wave behavior
is relatively simple. When the impactor strikes the tar-
get, a normal shock wave is produced that moves to the
right through the target. Once this shock wave reaches
the air at the perturbed interface on the right-hand side
of the target, the shock wave refracts and a rarefaction

(a)

(b)

FIG. 13: These diagrams show the baseline case (no
RMI suppression) in (a) and a general RMI suppression
design in (b) at the initial time (i.e., ∆t = 0.0 µs) and
at a later time (i.e., ∆t > 3.5 µs). For the design in (b),
the positive Atwood number created on the left-hand
side of the target by the optimized profile generates the
rectifying RMI that includes a large bubble formation.
This bubble formation contributes to suppressing RMI
spike growth on the right-hand side of the target.

wave is produced that releases the pressure in the tar-
get. This rarefaction wave is produced because the low-
density air has a much lower shock impedance Z than the
copper target (see shock impedance discussion in Section
II A). This results in vorticity deposition on only the
right-hand side of the target, as seen in Figure 14, which
shows the vorticity at several time instants for the base-
line case. Note that red contours imply positive vorticity
(counterclockwise) and blue contours imply negative vor-
ticity (clockwise). As is clear from Figure 14(b) and (c),
vorticity is high at the base of the growing RMI spikes
and acts in opposite directions (clockwise and counter-
clockwise) on each half of these spikes. The balance of
opposite direction vorticity for each spike is correlated to
the growth of the spike in the horizontal direction. In
Figure 14, there is essentially zero vorticity deposition
on the left-hand side of the target, which is flat for the
baseline case.

For the optimized design shown in Figure 9, the shock-
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(a)

(b)

(c)

(d)

(e)

FIG. 14: Vorticity plots of the baseline case (no RMI
suppression) shown in Figure 7 at several time instants.
In these plots, the vorticity is capped at ±0.5 µs−1 to
more clearly show the contours at various times. Note
that red contours imply positive vorticity
(counterclockwise) and blue contours imply negative
vorticity (clockwise): (a) ∆t = 0.0 µs (initial
configuration at impact); (b) ∆t = 1.75 µs; (c)
∆t = 3.50 µs; (d) ∆t = 5.25 µs; (e) ∆t = 7.0 µs.

wave behavior is slightly more complicated and the vor-
ticity deposition on the left-hand side of the target is
significant. Figure 15 shows a plot of pressure at several
early time instants between ∆t = 0.75 µs and 2.25 µs
for the design in Figure 9. When the impactor strikes
the target, a normal shock wave is initially produced.
However, the shock wave travels at higher velocity and
at higher pressure through the copper (which has higher
shock impedance Z than the lucite cavity region) [see
Figure 15(a)]. The higher velocity portions of the shock
wave move through the copper and lucite and eventually
meet to produce a high-pressure region near the interface
between the lucite cavity region and the copper target
[see Figure 15(b)]. This high-pressure region reflects off

this interface because lucite has a lower shock impedance
Z than the copper target and reverberates radially out-
wards [see Figure 15(c)]. This radial compression wave
then interacts with the corresponding wave from the ad-
jacent periods to produce a high-pressure region within
the copper protrusions [see Figure 15(d)]. Eventually, af-
ter significant vorticity deposition due to these reverber-
ating shock waves, rarefaction waves release the pressure
in the target.

(a)

(b)

(c)

(d)

(e)

FIG. 15: Pressure plots of the optimized design shown
in Figure 9 at several early time instants. In these plots,
the pressure color mapping is bounded at 0 GPa (blue)
and 70 GPa (red). The overlaid black lines represent
the boundaries between materials (e.g., between the
lucite cavity region and the copper target). These plots
show the reverberating shock waves produced by the
optimized profile. It is clear from (b) and (c) that a
compression wave is partially reflected radially off the
interface between the lucite cavity region and copper
target: (a) ∆t = 0.75 µs; (b) ∆t = 1.00 µs; (c)
∆t = 1.25 µs; (d) ∆t = 1.75 µs; (e) ∆t = 2.25 µs.

This vorticity deposition produces the rectifying RMI
on the left-hand side of the target. Figure 16 show the
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vorticity at several time instants for the optimized design
in Figure 9. As the rectifying RMI is generated on the
left-hand side of the target, the corresponding bubble
penetrates deeply into the target and affects the vorticity
on the right-hand side of the target. The result is that
the balanced vorticity for each spike (which occurs in the
baseline case) becomes unbalanced, causing the spikes on
the right-hand side of the target to move more vertically
and reducing growth in the horizontal direction. This
creates the “pinching” effect seen in Figure 9(d) and (e)
that contributes to the flattening of the right-hand side
of the target.

(a)

(b)

(c)

(d)

(e)

FIG. 16: Vorticity plots of the optimized design shown
in Figure 9 at several time instants. In these plots, the
vorticity is capped at ±0.5 µs−1 to more clearly show
the contours at various times. Note that red contours
imply positive vorticity (counterclockwise) and blue
contours imply negative vorticity (clockwise): (a)
∆t = 0.0 µs (initial configuration at impact); (b)
∆t = 1.75 µs; (c) ∆t = 3.50 µs; (d) ∆t = 5.25 µs; (e)
∆t = 7.0 µs.

IV. CONCLUSIONS

Our results show that it is possible to reduce and sup-
press RMI growth using gradient-free design optimiza-
tion methods. Our optimized designs achieve suppres-
sion of RMI spike growth by using an optimized profile
on the impactor side of the target (the side opposite to
the initially perturbed interface) that generates a recti-
fying RMI. This rectifying RMI nearly completely coun-
teracts RMI spike growth of the initially perturbed in-
terface. In our analysis, we have identified several key
features of our optimized designs that are necessary for
suppressing RMI spike growth at the perturbed interface.
These include several geometric and other features of the
optimized profile that are particularly favorable for gen-
erating this rectifying RMI. We have also investigated
shock-wave behavior and vorticity deposition for our op-
timized designs and found that the optimized profiles sig-
nificantly increase vorticity deposition on the impactor
side of the target by producing reverberating shock waves
in the target. These reverberating shock waves play a
significant role in instigating the rectifying RMI.

Overall, the methods that we have developed are very
successful at suppressing RMI spike growth at an initially
perturbed interface that has been impulsively accelerated
using a shock wave. Future work will involve applying
the design optimization methodologies that we have de-
veloped in this work to other RMI scenarios involving
different materials, target geometries, and compression
conditions. This may include a multi-objective optimiza-
tion where the objective functions in Equations (5) and
(6) are simultaneously minimized to reduce RMI spike
growth while maintaining target compactness. Another
area for future research may be to use design optimiza-
tion to exacerbate RMI spike growth (rather than sup-
pressing it as we have done in this work). Additionally,
shock-compression experiments will be needed to further
validate the results that we have presented in this study
and possibly help guide future computational work.
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Appendix A: Material model validation

To demonstrate that our material equations of state
and strength models are appropriate for the high-pressure
regimes that we consider in this study, we compare sim-
ulation results obtained from the hydrodynamics code
MARBL to an analytical scaling law developed by Di-
monte et al.13. The Dimonte et al.13 relation provides a
correlation between the maximum amplitude of the RMI
spike and the peak growth rate of the RMI spike. Un-
der certain compression conditions, the RMI perturba-
tion growth is halted due to the strength of the solid
material at the interface (e.g., copper). This implies that
there is a maximum spike amplitude max(hsp) that can
be obtained for a given set of compression conditions.
The plot in Figure 17(a) shows the spike amplitude hsp

versus time for our simulation setup using several differ-
ent impactor velocities. As seen in this plot, the RMI
spike growth is largely arrested after a certain period of
time and the spike amplitude levels off to an approxi-
mately constant value8,13. The Dimonte et al.13 analyti-
cal relation provides a means of predicting this maximum
spike amplitude max(hsp) for a given set of material and
compression conditions.

The Dimonte et al.13 relation draws from the Piriz et
al.8 relation, which is derived by integrating the equa-
tion of motion for the linear evolution of the perturbed
material interface. Piriz et al. assume that the mate-
rial behaves as a Hookean solid (i.e., as a linearly elas-
tic medium) below the yield criterion. These relations
are also developed under the assumption that the up-
stream material through which the shock wave is initially
moving can be approximated as behaving in an elastic–
perfectly plastic manner (although we use the Steinberg–
Guinan strength model36 in our simulations) that follows
the Prandtl–Reuss flow rule with the von Mises yield
criterion8. According to Dimonte et al.13, a RMI strength
parameter hY can be written as a combination of other
properties to obtain the following dimensionless form13

khY =
ρ1

Y
|ḣ0

sp|2 (A1)

where k is the wave number of the interface perturba-
tions, ρ1 is the density of the upstream material (prior
to shock loading), Y is the maximum yield stress of this
material (we use Y = 6.4 × 10−3 Mbar for copper), and

ḣ0
sp is the peak growth rate of the RMI spike, such that

ḣ0
sp = max(dhsp/dt). The wave number k is defined as
k = 2π/λ where λ is the wavelength of the interface per-
turbations. The maximum spike amplitude hsp can be
written as a linear function of khY as

khsp = β0 + β1khY (A2)

where β0 and β1 are constants that are dependent on the
system under consideration. Dimonte et al. found that
β0 ≈ 0.08 and β1 ≈ 0.24 work well for scenarios where
A ≈ −1, such as the scenario that we consider in this
work.

We use Equations (A1) and (A2) (setting β0 = 0.08
and β1 = 0.24) and compare this analytical relation with
our numerical simulation. Figure 17(b) shows a compari-
son between the analytical relation of Equation (A2) and
the maximum spike amplitude khsp for several simulation
results. As is clear from the results in Figure 17(b), our
simulations appear to be well approximated by the ana-
lytical relation of Equation (A2). Note that one caveat to
the analytical relation of Equation (A2) is that it is only
valid for khY below a certain point. For values of khY
above this point, the RMI spikes grow quite rapidly and
nonlinearly and the assumptions used to develop the rela-
tion in Equation (A2) tend to break down. This relation
is also only strictly applicable when the strength model
is approximated as being elastic–perfectly plastic. How-
ever, our simulations, which use the Steinberg–Guinan
strength model for copper, appear to be well approxi-
mated by the Dimonte et al. relation.

Appendix B: Differential evolution optimization

Gradient-free optimization methods provide a rela-
tively straight forward means of exploring the parame-
ter space without requiring the gradient of the objective
function. They are also capable of searching for a global
minimum, whereas gradient-based methods are often re-
stricted to finding local minima. There exists a vast vari-
ety of gradient-free methods and most employ a directed
random search that attempts to balance exploration ver-
sus exploitation (also called diversification versus inten-
sification). It is important to note that “No Free Lunch”
theorems38 show that most gradient-free methods per-
form as well on average as any other method. Therefore,
we have not exhaustively investigated gradient-free meth-
ods, but have instead simply selected differential evolu-
tion optimization (DEO)39,40, an evolutionary algorithm
that shares some similarities with a genetic algorithm.
Several studies in prior literature have found DEO to be
useful for solving design optimization problems that also
involve hydrodynamics simulations41–43. We use a vari-
ation of the DEO algorithm in the SciPy.optimize soft-
ware package in our analysis44. A brief description of
this algorithm is provided in the following paragraphs,
but additional details on DEO can be found in the work
of Storn and Price39, the developers of this algorithm.

The first step of the DEO algorithm is to generate an
initial set or population of trial parameter vectors using
Latin hypercube sampling (LHS) to ensure that these
values sufficiently span the parameter search space. We
designate these trial parameter vectors as ~xi,G, where the
subscript i is the index of a given trial vector within the
population and G is the iteration or “generation” num-
ber. The elements of these parameter vectors correspond
to the individual parameters of interest. The develop-
ers of the DEO algorithm recommend using a population
size containing 5D to 10D parameter vectors, where D is
the number of parameters used39. These trial parameter



Accepted to Phys. Fluids 10.1063/5.0100100

Physics of Fluids 16

0 2 4 6 8 10

Time [µs]

−0.05

0.00

0.05

0.10

0.15

0.20
h
sp

[c
m

]
Vi = 1.0 km/s

Vi = 1.4 km/s

Vi = 1.8 km/s

Vi = 2.2 km/s

Vi = 2.6 km/s

(a)

0 2 4 6 8

khY = ρA|V 0
sp|2/Y

0.0

0.5

1.0

1.5

2.0

m
ax

(k
h
sp

)

Dimonte et al. Relation

Simulation

(b)

FIG. 17: The relation of Dimonte et al.13 provides a
means for partially validating the material models used
in our simulations. The relation was developed using an
elastic–perfectly plastic strength model for copper, but
matches our simulation results well (which use the
Steinberg–Guinan strength model): (a) RMI spike
amplitude hsp versus time for our simulations that
involve a range of impactor velocities Vi. As seen in the
plot, the spike growth is eventually arrested and settles
to an approximately constant value; (b) A comparison
of the Dimonte et al. relation with the results from
several of our simulations at various impactor velocities.

vectors ~xi,G are then individually substituted into hydro-
dynamics simulations as described in Section II B, which
can all be run in parallel for the entire population of trial
parameter vectors for a given generation of the DEO al-
gorithm. These hydrodynamics simulations output data
for computing the objective function (e.g., tracer data for
the amplitude of the spike hsp and bubble hbu for each
period of the perturbed interface). This data is then sub-
stituted into the objective function of Equation (5) or (6)
to determine the relative fitness of each trial parameter
vector for reducing RMI spike growth.

The trial parameter vector that minimizes the objec-
tive function the most is selected from amongst the popu-
lation of vectors. We refer to this parameter vector as the
“best” parameter vector ~xbest,G and this vector is used in
the next generation of the DEO algorithm to produce a
set of “mutant” vectors in the following way. Two param-
eter vectors are individually selected at random from the
population of the previous generation. These two param-
eter vectors (which we designate as ~xr1,G and ~xr2,G) are
subtracted to produce a differential variation39, which is
scaled by a weighting factor F . The scaled differential
variation is then added to the best parameter vector to
produce a mutant vector as shown in the following equa-
tion:

~vi,G+1 = ~xbest,G + F · (~xr1,G − ~xr2,G). (B1)

This is repeated until a full population of mutant vectors
for the next generation ~vi,G+1 is produced.

After generating the mutant vectors, each trial param-
eter vector in the previous generation population under-
goes a round of “crossover“ with the mutant vectors. For
the crossover process, we refer to the trial parameter vec-
tors of the previous generation ~xi,G as the target vectors.
For each element in a target vector, a random number
rand(j) between 0 and 1 is chosen. If this random num-
ber is less than or equal to the crossover probability CR,
then the parameter value from the mutant vector is used
in the trial vector for the next generation ~xi,G+1. Oth-
erwise, the parameter value for the trial vector remains
the same as the value from the previous generation. The
crossover process for a single vector element xji,G+1 can
be represented as

xji,G+1 =

vji,G+1, if [rand(j) ≤ CR]

xji,G, if [rand(j) > CR]

j = 1, 2, . . . , D.

(B2)

where the subscript j is the index of a given ele-
ment within the parameter vector. An illustration of
the crossover process is also provided in Figure (18).
Note that the choice of the weighting factor F and the
crossover probability CR are generally application spe-
cific. For our application, we set F = 0.5 and CR = 0.75.

This new set of trial parameter vectors ~xi,G+1 is then
used as the trial population for the next generation of
the DEO algorithm and are individually substituted into
hydrodynamics simulations. The hydrodynamics data
is again used to find the best parameter vector ~xbest,G
for the current generation using the objective function of
Equation (5). This process is iteratively repeated until
a stopping criterion is reached. This stopping criterion
can be specified as a specific number of generations or as
a convergence criterion such as

σφi

〈φi〉
< ε, (B3)
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FIG. 18: For each generation of the DEO algorithm, a
population of mutant vectors ~vi,G+1 is produced using
the relation in Equation (B1). After creating a
population of mutant vectors ~vi,G+1, these mutant
vectors undergo a round of crossover with the target
vectors ~xi,G (i.e., the trial vectors of the previous
generation G) to produce a new set of trial vectors for
the next generation ~xi,G+1. To perform this crossover
process, a random number between 0 and 1 is selected
for each vector element j. If this random number is less
than or equal to the crossover probability CR, the
corresponding element from the mutant vector ~vi,G+1 is
used to produce ~xi,G+1. Otherwise, the element from
the previous trial vector ~xi,G is used. This crossover
selection process is described by Equation (B2).
Reproduced from D. M. Sterbentz et al., J. Appl. Phys.
128, 195903 (2020), with the permission of AIP
Publishing.

where σφi
is the standard deviation of the objective func-

tion across all parameter vectors of the current genera-
tion, 〈φi〉 is the average value of the objective function
across all parameter vectors, and ε is a specified conver-
gence tolerance that we set equal to ε = 0.01. Once the
stopping criterion is reached, the best parameter vector
for the current generation is output and ideally contains
the optimal set of parameters for minimizing the objec-
tive function. This constitutes the DEO algorithm that
we apply to the RMI reduction design problem.
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