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ABSTRACT
Tolerance Interval Equivalent Normal (TI-EN) and Su-

perdistribution (SD) sparse-sample uncertainty quantification
(UQ) methods are used for conservative estimation of small tail
probabilities. These methods are used to estimate the probabil-
ity of a response laying beyond a specified threshold with lim-
ited data. The study focused on sparse-sample regimes ranging
from N = 2 to 20 samples, because this is reflective of most ex-
perimental and some expensive computational situations. A tail
probability magnitude of 10−4 was examined on four different
distribution shapes, in order to be relevant for quantification of
margins and uncertainty (QMU) problems that arise in risk and
reliability analyses. In most cases the UQ methods were found to
have optimal performance with a small number of samples, be-
yond which the performance deteriorated as samples were added.
Using this observation, a generalized Jackknife resampling tech-
nique was developed to average many smaller subsamples. This
improved the performance of the SD and TI-EN methods, specif-
ically when a larger than optimal number of samples were avail-
able. A Complete Jackknifing technique, which considered all
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possible sub-sample combinations, was shown to perform bet-
ter in most cases than an alternative Bootstrap resampling tech-
nique.

INTRODUCTION
Estimation of tail probability magnitudes is a challenging

task with only a small number of samples and no prior knowl-
edge of the true distribution. Tolerance Interval Equivalent Nor-
mal (TI-EN) and Superdistribution (SD) sparse-sample uncer-
tainty quantification (UQ) methods described and investigated
in [1–3] and briefly described in the appendices of this paper
have recently been studied along with other sparse-sample UQ
methods to estimate the probability of a random event or occur-
rence beyond a specified threshold. This is commonly known
as exceedance probability (EP) estimation or tail probability es-
timation. While it may always be desirable to have additional
samples [4], in practice the number of samples is generally lim-
ited by some cost restriction. This is especially true for some of
the most expensive experiments or largest computer simulations,
where only a few test replicates or samples N can be performed,
e.g. N = 2 to 20 examined in this study.

The prior studies in [1] and [2] found that SD and TI-EN95
(targeted to a 95% confidence level per Appendix A) typically
perform best of the sparse-sample UQ methods studied under
sparse-data conditions. However, an interesting phenomenon oc-
curs with these methods. It is generally anticipated that addi-
tional samples will improve EP estimation. However, as estab-
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lished in [3], there is typically some optimal number of samples
for peak accuracy and/or reliability of conservative estimation
with the TI-EN and SD methods which are based on the Normal
distribution. When additional samples are added beyond the op-
timal number it may become evident that the distribution is non-
normal, and thus the accuracy and reliability of the estimated EP
deteriorates.

This is according to a performance measure (see next sec-
tion) assessed over thousands of random-sample trials which
considers both accuracy of the estimate relative to the true EP
value and the reliability rate or proportion of conservative esti-
mates that do not under-estimate the true EP. While the reasons
are understood for the performance deterioration (which occurs
for many of the 16 distributions studied in [1] and [3]), this ef-
fect leaves something to be desired when more samples are avail-
able than what yields optimal performance with the TI-EN or SD
methods and the said distributions.

Using the observation that a small/optimal number of sam-
ples yields most accurate and reliable EP estimate in these cases,
a generalized Jackknifing resampling technique is studied in this
paper in an attempt to improve TI-EN and SD performance for
larger-than-optimal sample sizes. This Jackknife resampling
technique averages many smaller subsample estimates in an ef-
fort to improve the performance for a larger sample size. This is
an initial study to investigate whether Jackknifing can be used to
improved the performance of the TI-EN and SD sparse-sample
UQ methods. Bootstrapping was also investigated as an alterna-
tive resampling technique to Jackknifing.

The focus of this study is on sparse-sample regimes ranging
from N = 2 to 20 samples. A tail probability magnitude of 10−4

is examined in order for the study to be relevant to quantification
of margins and uncertainty (QMU) problems that arise in risk
and reliability analyses. The sparse-sample UQ methods com-
bined with resampling will be analyzed for accuracy and reliabil-
ity on four distributions in this initial study. These distributions
are the Standard Normal, Student’s t, Weibull, and Exponential.

METHODS
The goal of this study is to quantify the accuracy and reli-

ability of EP predictions from sparse samples. This is done by
evaluating many random trials from known statistical distribu-
tions. The process for conducting these random trials follows.

First, a number of N random samples were generated from
a given statistical distribution. From this random sample, an EP
is estimated beyond a threshold that corresponds to a probability
of 10−4. The EP was estimated using the following UQ meth-
ods: TI-EN, SD, TI-EN with Jackknifing, SD with Jackknifing,
TI-EN with Bootstrapping, and SD with Bootstrapping. A 95%
confidence level was used with the TI-EN. The TI-EN and SD
methods are summarized in this papers appendix and the Jack-
knifing and Bootstrapping extensions are explained later in this

section.
Each EP estimate was compared to the true EP of 10−4. This

process was repeated 10,000 times for each N number of sam-
ples, where N = 2,3, · · · ,20. This was done for reach of the four
said distributions.

To quantitatively differentiate the methods in terms of accu-
racy and conservatism performance, a performance metric from
[1] was used:

EPmetric =
[N+

∑ ∆ log+
N−

∑ |∆ log |
]
/N+ (1)

∆ log = log10(EPestimated)− log10(EPtrue) (2)

where N+ and N− are the numbers of overshoot (>, conserva-
tive) and undershoot (<, unconservative) cases respectively. For
this study the total number of trials was N++N− = 10,000.

In performance or safety related design and analysis appli-
cations it is usually preferred to overestimate EP than to under-
estimate it. Thus, for a given numerator sum of overshoot and
undershoot error magnitudes in Eqn. 1, the greater the number
of overshoot errors contributing to that sum, the higher the pro-
portion of conservative errors, indicating better method perfor-
mance, and the larger the denominator in the performance met-
ric Eqn. 1. The resulting lower overall ratio (metric value) in
Eqn. 1 thus correlates with better method performance. This is
true in general with our performance metric: lower metric value
corresponds to better method performance.
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Figure 1. Student’s t-distribution with 5 degrees of freedom and loca-
tions of EPs of 10−3 to 10−5.

The performance metric combines aspects of both EP esti-
mation accuracy and reliability of being conservative. Because
there is often a desired or required lowest acceptable level of re-
liability of obtaining an EP estimate that is conservative, an EP
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Figure 2. Exponential Wide distribution with λ = 0.5 and locations of
EPs of 10−3 to 10−5.
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Figure 3. Weibull Narrow distribution with α = 0.2 and β = 0.4, as well
as the locations of EPs of 10−3 to 10−5.
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Figure 4. Standard Normal distribution with the locations of EPs of 10−3

to 10−5.

estimate that is conservative, a reliability measure alone is also
calculated and reported defined as

Reliability =
N+

the total number of trials
. (3)

The statistical distributions studied are: 1) Students t-distribution
with 5 degrees of freedom, 2) Exponential Wide distribution with
λ = 0.5, 3) Weibull Narrow distribution with α = 0.2 and β =
0.4, 4) Standard Normal distribution. The threshold location for
EPs on each distribution is shown in Figures 1-4. The Bootstrap
and Jackknife resampling techniques are explained in the next
two subsections.

Bootstrapping
Statistical resampling methods have been used to reduce the

bias (or error) in an estimated statistic [5]. One of the most popu-
lar resampling methods today is Bootstrapping, where a statistic
is estimated by first calculating the statistic on many different
sample combinations created by sampling the original set with
replacement. This results in many different estimates and pro-
vides insight into the possible true value of the statistic. An es-
timated EP can be found by averaging the EP estimates from
the combinations with replacement. Bootstrapping was used by
Picheny et al. [6] to more conservatively estimate a 99% tail
probability from 100 samples. In this paper we are concerned
with a much smaller probability and far fewer samples.

The most basic form of Bootstrapping is case resampling.
For N number of samples, there are

(
2N −1

N

)
=

(2N −1)!
N!(N −1)!

(4)

total number of combinations with replacement. For example,
the combinations with replacement for a sample of N = 3 with
values [1, 2, 7] are the following:

[1, 1, 1] [1, 1, 2] [1, 1, 7] [1, 2, 2] [1, 2, 7]
[1, 7, 7] [2, 2, 2] [2, 2, 7] [2, 7, 7] [7, 7, 7].

An EP would be calculated (using SD or other UQ method)
on each of the above sets, then the average of the EPs would rep-
resent the Bootstrapped EP prediction. This type of Bootstrap-
ping is referred to as exact case Bootstrapping resampling [7].

As N grows larger, computing the EP on all of the com-
binations with replacement becomes computationally infeasible.
With N = 20, there are over 68 billion combinations with re-
placement. In these infeasible cases, the EP can be predicted on
a large number of the possible combinations until the mean of
the predicted EPs converges.

Generalized Jackknife
Jackknifing is another popular resampling method that pre-

dates Bootstrapping. The Jackknife was originally created
by Quenouille [8], and the term Jackknifing was coined by
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Tukey [9]. Jackknifing involves estimating a statistic from N data
points by calculating the statistic on all of the (N − 1) subsam-
ple combinations (without replacement). The resulting Jackknife
statistic is simply the average of the subsample statistics. Jack-
knifing, like Bootstrapping, has been shown to reduce the bias
in the estimated statistic. A generalized Jackknife was proposed
by Schucany et al. which averages the estimated statistics on
combinations of (N −m) samples [10]. Typically m is a small
number [11], and in many cases becomes one [10].

We next propose and test a method that is an extreme in-
stance of the generalized Jackknife, such that sparse subsample
combinations are considered. We define r as the subsample size,
where

r = N −m (5)

and N is the number of samples, m is the generalized Jackknife
parameter. While typically m is a small number in most gen-
eralized Jackknife applications, in this proposed method m will
be a number near N resulting in r being a small number. This
study considered subsample sizes of r = 2,3,4,5. The Jackknife
estimated EP is the average EP estimate from the various combi-
nations of subsamples.

Two distinctions can be made between Jackknifing and
Bootstrapping. First Bootstrapping considers the combinations
with replacement, while Jackknifing combinations draw from the
original sample without replacement when creating a subsample.
Additionally, Jackknifing considers subsamples while Bootstrap-
ping considers new samples that are the same size of the original
sample set.

The combinations in Jackknife sampling are typically ex-
pressed as N choose r or ”NCr”. For any given NCr, there are

(
N
r

)
=

N(N −1) · · ·(N − r+1)
r(r−1) · · ·1

=
N!

r!(N − r)!
(6)

total number of possible combinations. This is a Pascal’s triangle
relationship with respect to r for any number N. An example of
how the total number of combinations varies with respect to r is
shown in Figure 5 for N = 10. In this case, the largest possible
number of combinations occurs when r = 5. For applications
when N is large, it may be impractical to compute and average all
of the subsample combinations. In these cases it is recommended
to take a large number of the possible combinations until the
mean of the statistic estimates converges.

A tail probability can be estimated using this proposed Jack-
knife method along with any given sparse-sample UQ method. A
tail probability is estimated using the following procedure:

1. Pick an appropriate value of r. (This is still being studied. A
suggestion is given later.)

2. Consider the NCr combinations of subsamples from a sam-
ple of a random variable with N total number of data points.

3. Randomly take one combination and calculate the EP using
the UQ method for a subsample size of r.

4. Repeat 3 until all possible combinations have been ex-
hausted, or the mean of the predicted tail probabilities has
converged.

5. Report the mean of the EP estimates.
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Figure 5. Example of how the total number of possible combinations in
NCr follows Pascal’s triangle for N = 10.

For example consider a given sample of [1, 2, 7, 5, 3], then
a 5C3 Jackknife would consider the following combinations:

[1, 2, 7] [1, 2, 5] [1, 2, 3] [1, 7, 5] [1, 7, 3]
[1, 5, 3] [2, 7, 5] [2, 7, 3] [2, 5, 3] [7, 5, 3].

This generalized Jackknife method requires a subsample
size r to be selected. This selection’s effect on the method perfor-
mance will be investigated in the next section. It is also desirable
to explore a parameter-free Jackknife variation. In cases where N
is small, it would be feasible to explore all of the complete sub-
sample combinations. For a sample size of N, the EP would be
predicted on all of the NC(N−1),NC(N−2), · · · ,NC2 combina-
tions. The final EP would result from the average of all Jackknife
combinations. In total there are

N−1

∑
k=2

(
N
k

)
= 2N − (N +2) (7)

possible Complete Jackknife subsample combinations to con-
sider. All may not be feasible to compute when N is large. This
method is referred to as the Complete Jackknife technique.
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If we were to consider the set [1,2,7,5], the Complete Jack-
knife consists of the following combinations:

4C3 : [1, 2, 7] [1, 2, 5] [1, 7, 5] [2, 7, 5]
4C2 : [1, 2] [1, 7] [1, 5] [2, 7] [2, 5] [7, 5].

RESULTS
This section investigates whether Bootstrapping and Jack-

knifing can be used to improve the SD and TI-EN95 predictions
of tail probabilities with limited samples. The techniques were
applied to the four distributions previously defined. The EPmet-
rics characterize the conservatism and accuracy performance of
10,000 random trials for any given number of samples. The reli-
ability represents the percentage of EP estimates that were con-
servative from the 10,000 random trials.

Improvements to EP estimates were investigated using the
Exact Bootstrapping method, along with NC2, NC3, NC4, NC5
Jackknifing, and the Complete Jackknife method. The number
of samples for the Exact Bootstrapping ranged from N = 3 to
N = 8 due to the cost limitations. The generalized Jackknifing
methods were also exact, meaning that every possible combina-
tion was computed rather than selecting combinations until the
mean demonstrated convergence. The NCr methods used up to
N = 14, and the Complete Jackknife used up to N = 11. While
all of these resampling techniques do not go up to the full range
of N = 20 samples, conclusions can be drawn about the trend
of their performance when compared to using just the SD or TI-
EN95 UQ methods. As a reminder, the true EP for each distribu-
tion was 10−4.

Student’s t-distribution
The Student’s 5 d-o-f t-distribution results for SD with and

without resampling are shown in Figure 6. The Exact Bootstrap
does not appear to offer reliable improvement in either accuracy
or reliability. Reliability is sometimes significantly better and
sometimes significantly worse with SD alone than with the Exact
Bootstrap when considering the same number of samples. The
EPmetric indicates that combined accuracy + reliability perfor-
mance is sometimes better and sometimes worse between the SD
and Exact Bootstrap methods. Thus, no overriding trends above
the performance variability differentiate SD-Bootstrap from SD
alone.

However, generalized Jackknifing with SD shows promise
to offer improved reliability and combined accuracy + reliability
performance. Considering reliability, the SD Jackknife (SDJ)
method always improved on SD’s reliability for the same number
of total samples. For instance, with N = 5 the SDJ methods had a
reliability > 95%, where the reliability of SD alone was < 80%.

For combined accuracy + reliability according to the EPmet-
ric, SDJ with certain NCr parameters significantly improved on
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Figure 6. The EPmetric and reliability for the Superdistribution with Boot-
strapping and Jackknifing on a 5 d-o-f Student’s t-distribution.

the results of SD alone for the same number of total samples. In
particular, consider that optimal SD accuracy + reliability by the
EPmetric occurs with NSDopt = 5 samples for this t-distribution.
Adding more samples degrades EPmetric performance if SD is
used without resampling. However, performance improves with
added samples if used in the SD-Jackknife method with NC5,
which corresponds to NCr where r = NSDopt = 5. Lower values
of r (r < NSDopt) result in SD-Jackknife performance that never
(for any number of samples N) surpasses that of optimal SD with
5 samples. The NC5 results have the lowest EPmetric value of
any of the methods over the range N ≥ 6 where NC5 is possible.
Over this range, NC5 SDJ also had considerably better reliability
than SD alone. NC5 reliability is 83% for N = 6 and increases
as N increases, while the SD reliability is just 60% at N = 6 and
quickly deteriorates as N increases.

Optimum SDJ performance occurs within one or two sam-
ples beyond the optimum number for SD alone, N = 6 or 7 total
samples in this case. Further samples add expense but result in
improved reliability. However, additional samples do not appre-

5



ciably improve overall performance (by the EPmetric and also if
one considers cost).

The performance of the Complete SDJ does continue to im-
prove as samples are added. However, the EPmetric improve-
ment starts from a relatively high/bad value at N = 2 samples.
The improvement trend indicates about 14 or more total samples
are required to achieve the same level of EPmetric accuracy +
reliability performance as NC5 SDJ with N = 5 total samples.

The results of the TI-EN95 method with and without resam-
pling applied to Student’s t-distribution are shown in Figure 7.
Many of the trends observed with SD and SD+resampling ap-
ply here as well. Starting from N = 2 samples, the TI-EN95
results first improve with added samples then deteriorate with
more samples (EP metric first dips then climbs), and reliability
always declines with added samples.

TI-EN95 has significantly worse EPmetric performance
than SD for N ≤ 14. The lower-performing TI-EN95 is im-
proved by the resampling techniques proportionately more than
they improve SD, both in terms of reliability and EPmetric reli-
ability+accuracy. Indeed, all the NCr results demonstrate higher
accuracy and reliability than when using TI-EN95 alone, for the
same total number of samples.

The NCr EPmetric results appear to plateau as the num-
ber of samples increases, while the Complete Jackknife results
continue to improve and may be best for N ≥ 14. Like with
SD-Bootstrapping results, TI-EN95-Bootstrapping offered only
marginal improvements to the EPmetric and reliability when
compared to using TI-EN95 alone.

Although the TI-EN95 results improve significantly with
Jackknifing, the results are not better in an absolute sense than
the SD-Jackknifing results. If we consider the best results using
the resampling techniques, the NC5 SDJ results had both a lower
EPmetric and higher reliability than the TI-EN95J NC5 results
for all N tried. This is also true for optimal NC5 SDJ vs. optimal
TI-EN95J NCr where r = NTIEN95opt = 4.

Exponential Wide distribution
The results for SD with and without resampling applied to

the Exponential Wide distribution are shown in Figure 8. Re-
sults are qualitatively very similar to those for the 5 d-o-f t-
distribution. Very little difference exists between the SD results
without resampling and those with Bootstrap resampling. Reli-
ability and accuracy are roughly the same for both methods for
any given number of samples.

Again, SDJ always had higher reliability than SD alone, for
the same number of total samples. Concerning EPmetric reli-
ability + accuracy performance, when the number of samples
is increased beyond the SD-only optimum NSDopt = 4 for this
distribution, the EPmetric performance quickly degrades. Con-
versely, performance quickly improves when SDJ resampling is
used with NCr where r = NSDopt = 4. NC5 results also exhibit
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Figure 7. The EPmetric and reliability for the TI-EN95 with Bootstrapping
and Jackknifing on Student’s t-distribution.

better EPmetric performance than optimal SD alone, but do not
attain a reasonable 80% reliability level until a relatively costly
N = 10 samples. For half the cost (N = 5 samples, which is the
lowest number possible for use of NC4 SDJ), 5C4 reliability is
about 88%. For SD alone, reliability is only about 60% for 5
samples.

In the other direction with r < NSDopt, NC2 and NC3 EP-
metric results are inferior to NC4 and NC5 results over the ap-
plicable range of N studied (up to N=14). NC2 and NC3 never
(for any total number of samples studied) have better EP metric
performance than optimal SD with 4 samples. However, their
reliability is always significantly higher than the 78% reliability
of optimal SD.

The optimal NC4 SD-Jackknife method exhibits an EP-
metric performance optimum at N = 6, a few samples beyond
the optimum number for SD alone. Further samples add ex-
pense, with no improvements-even degradation-in EPmetric per-
formance. However, further samples do improve the already high
reliability (≈0.92 at N = 6, ≈0.99 at N = 12).
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Figure 8. The EPmetric and reliability for the Superdistribution with Boot-
strapping and Jackknifing on the Exponential Wide distribution.

On the other hand, performance of the Complete SDJ
(CSDJ) does keep improving as samples are added. However, the
CSDJ was not as effective of using SDJ with optimal subsample
size r. CSDJ required about 12 samples to achieve the same EP-
metric level of accuracy + reliability performance as NC4 SDJ
with the optimal 6 samples.

Results for the TI-EN95 method with and without resam-
pling are shown in Figure 9. Some of the trends observed with
SD apply here as well. Starting from N = 2 samples the TI-EN95
reliability always declines with added samples. However, EP-
metric results do not first improve with added samples like they
do for SD with this distribution; TI-EN95 EPmetric performance
always deteriorates with added samples.

TI-EN95 has significantly worse EPmetric performance
than SD for N ≤ 16. The lower-performing TI-EN95 method
is improved by the resampling techniques proportionately even
more than they improve SD-and even more so for the present
distribution than for the student-t distribution, both in terms of
reliability and EPmetric reliability+accuracy. Indeed, all the re-

sampling results demonstrate higher accuracy and reliability than
when using TI-EN95 alone, for the same total number of sam-
ples.

The NCr and Exact Bootstrap EPmetric results plateau or
appear to asymptote toward different plateaus as the number of
samples increases, while the Complete Jackknife results start
best and continue to improve with added samples.

Unlike with Bootstrapping for the prior three cases (SD-B
and TI-EN95-B on the t-distribution and SD-B on the Expo-
nential Wide distribution), Bootstrapping significantly improved
TI-EN95 reliability and EPmetric values compared to using TI-
EN95 alone. However, Jackknife resampling, and Complete
Jackknife in particular, performed better for a given number of
samples.

Although resampling improves TI-EN95 results propor-
tionately more than it improves SDs, in absolute terms SD-
Jackknifes accuracy+reliability EPmetric results are best (com-
pare TI-EN95 Complete Jackknife against SDJ NC5 at any N).
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Figure 9. The EPmetric and reliability for the TI-EN95 with Bootstrapping
and Jackknifing on the Exponential Wide distribution.
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Weibull Narrow distribution
The results of using SD and TI-EN95 with and without re-

sampling on the Weibull Narrow distribution are shown in Fig-
ures 10 and 11. Of 16 distributions studied in [3], the Weibull
Narrow distribution was the most difficult to predict tail prob-
abilities for, given very limited data and the sparse-sample UQ
methods tried. This is most evident in the low reliability levels
for SD alone and TI-EN95 alone in Figures 10 and 11. The best
SD reliability is 0.3 with N = 2 samples, dropping precipitously
to about 0.05 with N = 3, 0.02 at N = 4, and 0.01 for N = 5 to
20. TI-EN95 reliability is roughly an order of magnitude worse
at any sample size N. This is the backdrop against which any
improvements from resampling are characterized.

SD related results are discussed first. Again, Exact Boot-
strapping with SD produced results that were not meaningfully
different from using SD alone. Reliability and accuracy are
roughly the same with and without bootstrapping for any given
number of samples.

Also like the previous distributions, SD with Jackknifing al-
ways had higher reliability than SD alone for the same number
of samples. For instance, the lowest number of samples that the
SDJ method can be applied with (N = 3) had a reliability of about
42% whereas the SD-only reliability was about 5%. This in-
volves the optimal SDJ NCr variant, where r = NSDopt = 2 for
the EPmetric and this distribution. This variant has a reasonable
reliability of about 73% with N = 14 (the maximum N investi-
gated). It is projected from the trend in the plot that a useful 80%
reliability will occur with about N = 17 samples. This optimal
variant has a strong trend of increasing reliability with increas-
ing numbers of samples. This is in contrast to the other NCr SDJ
variants or any of the other resampling methods, which do not
yield strong reliability growth with added samples, and do not
have reasonable reliability at any number of samples tried.

Concerning EPmetric reliability + accuracy performance,
when the number of samples is increased beyond the SD-only
optimum NSDopt = 2 for this distribution, the EPmetric perfor-
mance quickly degrades. Conversely, performance quickly im-
proves when SDJ resampling is used with optimal NC2. The
NC2 EPmetric results in Figure 10 exhibit vastly better combined
accuracy + reliability performance than SD (for the same num-
ber of total samples) over the full range N = 3 to 14 investigated.
Larger numbers of samples will result in even greater advantage
of NC2 SDJ if its trend continues of improving reliability and
combined accuracy + reliability with increasing total number of
samples.

Reliability and reliability + accuracy performance of NC5 to
NC3 families of SDJ are consecutively better than SD over the
full range N = 3 to 14 investigated, but are vastly worse than the
optimal NC2 family over this range (according to EPmetric). Op-
timal SD alone (N=2 samples) has better EPmetric performance
than non-optimal NC3, NC4, and NC5 SDJ methods with sub-
stantially more samples (except for NC5 with ¿11 samples).
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Figure 10. The EPmetric and reliability for the Superdistribution with
Bootstrapping and Jackknifing on the Weibull Narrow distribution.

Reliability and reliability + accuracy performance of the
Complete SDJ lies between that of the NC2 and NC3 methods.
Like the NC2 results, the Complete SDJ combined performance
is better (over the full range investigated, N = 3 to 14) than the
optimal SD-only results (at N = 2). Unlike for the NCr SDJ
methods, reliability of CSDJ declines as the number of total sam-
ples increases. This is the apparent cause for CSDJ’s accuracy
+ reliability EPmetric reaching an optimum at about N = 8 sam-
ples, and then worsening with more samples. In contrast, the
EPmetric for the NCr methods all continually improve with in-
creasing samples.

Results for TI-EN95 with and without resampling are shown
in Figure 11. The TI-EN95-only trends observed with SD-only
apply here as well. Starting from N = 2 samples the TI-EN95 re-
liability initially precipitously declines with added samples and
asymptote to near-zero reliability for N ≥ 3 like they do for SD
with this distribution. Also, EPmetric results immediately de-
cline with added samples like they do for SD. (This is also seen
for TI-EN95 with the Exponential Wide distribution.) However,
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in absolute terms the SD results are much better than the TI-
EN95 results, for any given number of samples.

All the resampling methods demonstrate substantially better
results than when using TI-EN95 alone (for the same number of
samples). Moreover, the lower-performing TI-EN95 method (vs.
SD) is improved by the resampling techniques proportionately
more than SD is improved-both in terms of reliability and EP-
metric reliability+accuracy. For instance, TI-EN95 with Exact
Bootstrapping shows noticeable improvement of reliability and
EPmetric results with increasing samples, whereas no apprecia-
ble improvement occurs for SD with Bootstrapping. Complete
Jackknifing (CJ) also has a much more evident positive effect
on TI-EN95 than on SD. TI-EN95-CJ reliability starts off better
than TI-EN95-alone at N = 3 samples (the lowest allowable for
CJ), and the TI-EN95-CJ increases with more samples. SD-CJ
reliability also starts off better than SD-alone at N = 3 samples,
but the SD-CJ reliability decreases with more samples. These
different trends show up in TI-EN95-CJ EPmetric performance
continually improving with added samples, while SD-CJ first im-
proves then declines with added samples. Even so, the SD-B and
SD-CJ results are in absolute terms much better than the respec-
tive TI-EN95-B and TI-EN95-CJ results for a given number of
samples over the range investigated (except for CJ reliability at
N = 11).

The best TI-EN95 resampling method for both reliability
and EPmetric accuracy+reliability is TI-EN95-Jackknifing with
optimal NCr subsample size r = NTIEN95opt = 2 for this distri-
bution. The TI-EN95-CJ results are next best. The NC3, NC4,
and NC5 TI-EN95-J results are progressively worse TI-EN95-CJ
results. The rankings in the above three sentences are also appli-
cable to SD by replacing ’TI-EN95’ by ’SD’. In absolute terms,
the SD results are much better than their corresponding TI-EN95
results, for any given number of samples. This was the case for
the prior two distributions as well.

Standard Normal Distribution
Using generalized Jackknifing with SD was shown to be

useful for improving the EPmetric accuracy + reliability (beyond
what was optimal for SD alone) when predicting tail probabili-
ties on the previous difficult non-normal distributions. This has
involved finding a suitable value for the r subsample size. How-
ever, it is not clear whether the NCr Jackknifing would improve
the results on the Normal distribution using the TI-EN95 and
SD methods. The reason is that the Normal distribution would
be the ideal case to use the TI-EN95 or SD methods without
Jackknifing, since the TI-EN95 and SD methods were developed
considering the behavior of Normal distributions.

The results for SD with and without resampling on the Stan-
dard Normal distribution are presented in Figure 12. There
are some notable differences between the results on the Stan-
dard Normal distribution and the previous distributions. Most
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Figure 11. The EPmetric and reliability for the TI-EN95 with Bootstrap-
ping and Jackknifing on the Weibull Narrow distribution.

notably the EPmetric values for combined accuracy + reliabil-
ity performance of SD-alone continually decrease/improve with
added samples over the full range 2 to 20 studied. The NCr SD-
Jackknife EPmetric values are all significantly worse than using
SD alone, and get increasingly worse as samples increase. How-
ever, like with the previous distributions the reliability of the NCr
methods was always higher than SD alone, for the same number
of samples. In fact, all NCr reliabilities 1.0. This higher re-
liability comes with an unwelcome tradeoff of lower accuracy
(worse accuracy + reliability EPmetric value while reliability re-
mains perfect), because the reliabilities are already sufficiently
high with SD alone (¿87% over the entire range from 2 to 20
samples). Note that the relatively poor performance for NCr SDJ
may be because the lowest EPmetric occurred at the highest sam-
ple sizes studied, N=19 and20; no small-sample NSDopt exists for
this distribution. The order of performance of the NC2, NC3,
NC4, NC5 methods correlates with the larger their subsample
size r is toward 20.

Complete SD-Jackknife does improve in combined accu-
racy + reliability performance per the EPmetric as samples are
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Figure 12. The EPmetric and reliability for the Superdistribution with
Bootstrapping and Jackknifing on the standard Normal distribution.

added. Recall that the performance of SD-alone increased as
the number of samples increased, so it is not unexpected that
averaging-in these better estimates would improve the Complete
SD-Jackknife results. CSDJ also has reliabilities 1.0 for the 3
to 11 total samples tried with this method. Its improving trend
doesnt appear to reach the best NCr method on this distribu-
tion (NC5) until N=12 samples. There its EPmetric value is the
about same as NC5s. However, it appears that 14 samples are
required before the CSDJ trend reaches a better/lower EPmet-
ric value than NC5s lowest/best value which occurs at N=6. In
fact, for any N in the range 3 to 11 total samples investigated
for Complete SD-Jackknife, an NCr SD-Jackknife method can
be pointed-to that is more cost effective.

The Standard Normal results for TI-EN95 with and without
resampling are shown in Figure 13. The reliability of TI-EN95
was consistently around 95% (as expected from the 95% confi-
dence level and the fact that the distribution is Normal), while
the reliability of SD decreased from 1 to 0.87 as the samples
increased from 2 to 20. Like for SD, TI-EN95s accuracy +
reliability EPmetric continually improved with added samples.

The lowest EPmetric value occurred at the highest sample size
studied, N=20; no small-sample NTIEN95opt exists for this distri-
bution. Overall, SD had better EPmetric performance than TI-
EN95 for a given number of samples over the range 2 to 20 stud-
ied.

For both TI-EN95 and SD, reliability improved with Com-
plete and NCr Jackknifing at the cost of worse combined ac-
curacy + reliability EPmetric values. Reliability and combined
reliability + accuracy results with SD Jackknifing are better than
or as good as results with TI-EN95 Jackknifing.

Unlike the behavior of the previous distributions, the EP-
metric performance of TI-EN95 and SD methods improved with
bootstrapping with little trade-off in reliability. In fact, TI-EN95
reliability improved slightly with bootstrapping.
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Figure 13. The EPmetric and reliability for the TI-EN95 with Bootstrap-
ping and Jackknifing on the standard Normal distribution.
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DISCUSSION
Jackknifing (both Complete and NCr versions) was demon-

strated to universally increase the reliability of attaining conser-
vative tail-probability estimates (for any given number of sam-
ples and for all distributions) compared to using SD or TI-EN95
methods alone. In the best cases, Jackknife resampling improved
both reliability and accuracy of the EP estimates. In the worse
cases it improved reliability at the cost of worsened accuracy
(over-conservatism). This was true for resampling with both the
SD and TI-EN95 sparse-sample UQ methods. Employing the
methods with Bootstrap resampling sometimes reduced their re-
liability but sometimes also gave better combined EPmetric reli-
ability + accuracy than Jackknife resampling did.

For the distributions and a tail-probability magnitude of
10−4 studied here, SD-alone usually performed better than TI-
EN95-alone in terms of reliability and combined reliability +
accuracy EPmetric performance for a given number of sam-
ples. The optimal/best SD result was always better than the op-
timal/best TI-EN95 result according to the EPmetric. In broader
terms, for 16 distributions including the four in this paper and
for EP magnitudes 10−1 to 10−5, it is found in [3] that SD nor-
mally performs better than TI-EN methods with 90%, 95%, and
99.99% confidence settings, and one other sparse-sample UQ
method tried.

A similar dynamic is found to carry over to SD and TIEN-95
when used with resampling in [3] and in this paper. On the four
distributions and 10−4 EP magnitude studied here, SD with re-
sampling normally had better reliability and EPmetric reliability
+ accuracy than TI-EN95 with resampling even though resam-
pling improved the lower-performing TIEN-95 method propor-
tionately more than it improved the SD method.

For most of the 16 distributions studied in [3], SD and TI-
EN95 have optimum sample sizes NSDopt and NTIEN95opt where
EPmetric values of combined accuracy + reliability performance
are lowest/best for each method. Performance worsens with
added samples beyond the optimal number unless resampling
is used. The most cost effective resampling method in this sit-
uation is found to be NCr Jackknifing with a ”rule of thumb”
subsample size (r = NSDopt or NTIEN95opt for the corresponding
method. See the associated reliability improvement with one
added sample from the third to the fourth column in Table 1 for
the better-performing SD variant of methods. This ”rule” applies
more strictly for SDJ than for the TI-EN95J variant. The latters
EPmetric value is, in the case of Figure 7, slightly better when
r = (NTIEN95opt−1) in NCr Jackknifing with the same total num-
ber of samples N needed as a minimum for the rule-of-thumb use
(see the N = 5 cases in Figure 7). Nonetheless, the EPmetric dif-
ferences are so minor that the rule is deemed to effectively apply.
Note that the Normal distribution does not necessarily break this
”rule”. It simply has EPmetric optima at an asymptotically large
number of samples, so the rule is not practically implementable
or testable for the Normal distribution.

It is also observed that for the better-performing SDJ variant,
the minimum number of samples needed for the rule-of-thumb
NCrSDopt Jackknifing is all that is needed for many foreseeable
engineering purposes. Additional samples are not highly cost ef-
fective. They do not improve the EPmetric value significantly
and sometimes even worsen it (except for appreciable improve-
ment for the Weibull Narrow distribution, which is presumed to
be an outlier based on outlier results from SD-only and TI-EN-
only methods applied to this and 15 other distributions in [3],
including a Weibull with different parameters values). Reli-
abilities are already reasonably high with the minimum num-
ber of NCrSDopt Jackknifing samples (except for the pathologi-
cal Weibull Narrow distribution). Reliabilities do improve with
more samples, but maybe not be enough to justify the added sam-
pling expense-especially with expensive experiments or simula-
tions. The 4th and 5th columns of Table 1 present results on this
point.

Note also that using a subsample size r > ropt should be
avoided because this can significantly decrease the reliability of
NCr Jackknifing. This is exemplified in the last column of Ta-
ble 1 for the Exponential and Weibull distributions. For the same
total number of samples underlying the results in columns 5 and
6, the reliabilities in the last column (6) are substantially lower
than those in column 5. In fact, the results in column 6 are sub-
stantially lower than those in columns 3 and 4 with fewer total
samples. Column 3 shows that even SD alone without Jackknif-
ing and with two fewer samples (1/3 to 1/2 fewer) yields better
reliabilities than the column 6 example of NCr Jackknifing with
subsample size r > rSDopt. The much lower reliabilities in the
latter cases also show up in worse combined reliability + accu-
racy EPmetric values in the plots in Figures 8 and 10. Similar
dynamics exist for TI-EN95 variants of the methods.

A different type of deleterious effect occurs when the sub-
sample size is r < rSDopt. In this case, NCr SD Jackknifing at-
tains very high reliabilities of 1 for any number of samples stud-
ied here (2 to 20) for the three distributions for which r < rSDopt
is possible. (This excludes the Weibull Narrow distribution.) Es-
sentially perfect reliability is a sign of over-conservatism. This is
reflected in combined accuracy + reliability EPmetric values that
are inferior, over a broad range of samples, to performance ob-
tained with SD alone or NCrSDopt SD Jackknifing in the regime
of small numbers of samples (3 to 6) relevant for expensive tests
or simulations. The plots in Figures 6, 8, and 12 show this.

In general, SD or TI-EN95 with NCr Jackknifing with non-
optimal subsample size can perform less well in terms of com-
bined EPmetric performance than other resampling methods or
SD or TI-EN95 alone, for a given number of total samples. Re-
liability alone is not hurt by Jackknife resampling; SD and TI-
EN95 reliabilities are, for a given number of total samples, al-
ways improved by any of the Jackknifing methods, including
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Table 1. Reliability results for the four distributions and SD NCr Jackknifing with various subsample sizes r.

Distribution NSDopt = rSDopt SD reliability SDJ reliability (NCr) SDJ reliability (NCr) SDJ reliability (NCr)

N = NSDopt r = NSDopt r = NSDopt r = NSDopt +1

N = NSDopt +1 N = NSDopt +2 N = NSDopt +2

5 DOF Student-t 5 0.78 0.84 (6C5) 0.87 (7C5) No results for 7C6

Exponential Wide 4 0.82 0.89 (5C4) 0.92 (6C4) 0.68 (6C5)

Weibull Narrow 2 0.31 0.38 (3C2) 0.44 (4C2) 0.05 (4C3)

Standard Normal 4 see1 0.99 1.00 (5C4) 1.00 (6C4) 1.00 (6C5)

non-optimal NCr Jackknifing.2 But the improved reliability usu-
ally comes at the price of worse accuracy in the form of over-
conservatism. Therefore, getting the most out of NCr Jackknif-
ing requires knowledge of the optimal subsample size for a given
distribution and EP magnitude. This is mapped-out in [3] for
16 diverse distributions including the four in this paper and for
EP magnitudes 10−1 to 10−5 (for SD and several other sparse-
sample UQ methods). Unfortunately, in real tail-probability es-
timation problems the exact distribution shape and order of EP
magnitude are not known precisely, if at all. Even if the infor-
mation were available, it may be that the affordable sampling
budget does not allow the optimum subsample size to be reached
for optimal NCr Jackknifing.

Some of these NCr Jackknifing difficulties can be eased by
using Complete Jackknifing. It is a mostly parameter-free Jack-
knife resampling technique (with a qualification in the last sen-
tence of this paragraph). This averages all possible NCr Jack-
knife results obtained from all possible r subsample sizes given
a total number of samples N. This makes the method more ro-
bust to lack of knowledge of the particular optimum subsample
size ropt in a problem. The NCr Jackknifing EP estimates with
r < ropt will contribute conservative bias relative to the SD or
TI-EN95 only estimate and even relative to the (usually) reli-
able/conservative NCropt estimate (see column 4 of Table 1 for
SD). On the other hand, NCr Jackknifing EP estimates using
r > ropt will contribute non-conservative bias. The latter wins out
when Complete SDJ is applied to the pathological Weibull Nar-
row distribution (see Figure 10) as the total number of samples
increases and larger over-sized subsamples r > ropt are admitted.
For the other three distributions, no similar ill effects are appar-
ent up to the highest number of samples tried (11). Indeed, the
reliabilities are 1 over the CSDJ range of samples investigated

2This statement does not conflict with the discussion around Table 1. Re-
liability of NCr Jackknifing with r > ropt, so N > (ropt + 1), can yield lower
reliability than SD or TI-EN95 alone with a different/lower number of samples
≤ ropt.

(3 to 11) and the EPmetric accuracy + reliability trends look like
they will best NCropt Jackknifing at slightly higher numbers of
samples, 12 to 14. Nonetheless, in most cases there will be an
upper limit to the number of samples that can be used before the
described ill effects occur with Complete Jackknifing.

The optimum subsample sizes mapped-out in [3] (as men-
tioned above) show that the vast majority are in the range 2 to
6 for SD. (In the following we concentrate on SD and SD with
resampling because of their broad advantage over TI-EN95 and
other sparse-data methods tried to date.) Given what we have
learned thus far, we would minimize the chances of the said ill
effects for any problem with unknown distribution and EP mag-
nitude by limiting the total number of samples used with CSDJ
to, say, 7. This would limit EP under-estimation risk to what is
anticipated to be a reasonably low level. (We cannot be more
quantitative without applying CSDJ to our full test suite of 16
diverse distributions and 10−1 to 10−5 EP magnitudes.) Risk
will be even smaller if fewer than 7 samples are used or are af-
fordable. For the distributions we have applied CSDJ analysis
to, reliabilities are 1 for the three non-pathological distributions
in this paper and two others in [3], for an EP magnitude 10−4.
This occurs over the range 3 to 11 samples tried. For 2 samples,
SD-alone would be used. This gives reliabilities of 1 in the five
non-pathological cases.

This conservative strategy is driven by not having analyzed
the many other cases mentioned above, and also the realistic am-
biguity in any given application problem of not knowing the dis-
tribution shape or EP order of magnitude. The downside of this
lack of knowledge and therefore the conservatively biased strat-
egy is that over-conservatism likely prevails. Indeed, Complete
Jackknifing yielded worse combined reliability + accuracy EP-
metric values over the range of samples tried with it (2 to 11) than
NCropt Jackknifing in all cases studied in this paper but the one
in Fig. 9. This conservatism could manifest, for example, in an
EP estimate of 10−3 while it is really several orders smaller, like
10−6. The indicated quantification over the broader data base of
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16 diverse distributions and 10−1 to 10−5 EP magnitudes would
help quantify the reliability/risk vs. accuracy/conservatism of
using various numbers of samples with CSDJ. It would therefore
help identify the best number of samples to use for an appropriate
risk-reward balance in a given project.

Bootstrap resampling performed sometimes marginally bet-
ter and sometimes marginally worse than SD or TI-EN95 without
resampling, both in terms of reliability and combined reliability
+ accuracy by the EP metric. Bootstrap resampling did not yield
substantial reliability gains like Jackknifing did for a given total
number of samples.

Finally, both Bootstrapping and Jackknifing can be used to
construct a distribution of EP estimates that are averaged. This is
perhaps one of the most important features of resampling tech-
niques was not investigated in this work. Only the average was
used in this study, but it may be desirable to work with the dis-
tribution of EP estimates in the most risk averse applications.
Instead of using the mean of the EP estimates, a more conser-
vative EP estimate may come from the 90th percentile or other
high percentile of the distribution of EP estimates. This may be
particularly useful if the distribution is known to be unlike any
distribution for which the resampling methods performance has
been characterized a-priori.

CONCLUSION
This work demonstrated that resampling can be used to im-

prove the performance of the SD and TI-EN95 sparse-sample
UQ methods in terms of reliability of attaining a conservative EP
estimate, and accuracy of the estimate. There is generally an op-
timal number of samples Nopt beyond which the performance of
the SD and TI-EN95 methods worsen. However, when the meth-
ods are paired with resampling techniques, the performance can
improve substantially. While Bootstrapping didn’t offer much
improvement, the NCr Jackknife with optimal subsample size
r = ropt = NSDopt paired with SD showed the most improvement.
(SD is broadly found to perform better than TI-EN95 and other
sparse-sample UQ methods investigated, whether the methods
are used alone or with resampling.)

However, SD NCr Jackknifing without the optimal subsam-
ple size can perform less well than SD alone for a given number
of samples-in terms of combined reliability + accuracy per our
EPmetric, although reliability alone always improves with Jack-
knifing. Because combined reliability + accuracy performance
suffers with non-optimal subsample size, and optimal subsam-
ple size varies with distribution shape and the EP magnitude
involved, and these are normally unknown in real problems, a
more robust approach was sought. Complete NCr Jackknifing
is less parameter-dependent and it yielded higher reliability than
non-optimal NCr Jackknifing and better combined reliability +
accuracy when the NCr subsample size is highly non-optimal, as
could be for a real problem.

An upper constraint on the total number of samples that can
be beneficially used with the Complete Jackknife exists for the
reasons explained in the previous section. We have given prelim-
inary guidance on what is anticipated to be a very conservative
”safe” upper limit for use of CSDJ. Useful future work would
involve refining this guidance by applying CSDJ and analyzing
its performance on our full test suite of 16 diverse distributions
and 10−1 to 10−5 EP magnitudes in [3].
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Appendix A: Tolerance-Interval Equivalent Normal
Tolerance Intervals (TIs) are a simple way to account for the

epistemic sampling uncertainty introduced from finite samples of
a random variable. TIs are parameterized by two user-prescribed
levels: one for the desired ”coverage” proportion of a distribu-
tion and one for the desired degree of statistical ”confidence” in
covering or bounding at least that proportion.

As Figure 14 illustrates, a TI is constructed by first calcu-
lating the mean µ̃ and standard deviation σ̃ of a sample. The
tolerance interval is centered at the sample mean. The bounds
are determined by multiplying the sample standard deviation by
a factor f ,

L = µ̃− f σ̃ (8)
U = µ̃+ f σ̃ (9)

where L and U represent the lower and upper bound of a X%/Y%
TI. The factor f depends on the desired coverage, confidence,
and the N number of samples. There are tables to look up f
in [12] and [13]. Equations to calculate f provided a coverage,
confidence, and the number of samples can be found in [14] and
[15].

Figure 14. Construction of a tolerance interval and its ”Equivalent Nor-
mal” distribution (from [1]).

A TI ”Equivalent Normal” (TI-EN) distribution (see Fig-
ure 14) can be determined by finding an equivalent normal stan-
dard deviation σEN as explained in [1]. If 95% coverage is used,

then

σEN =
f σ̃

1.96
(10)

and the resulting TI-EN is a Normal distribution of mean µ̃ and
variance of σ2

EN.
Alternatively, equations in [14] and [15] can be used to de-

termine σEN as a function of only the confidence level and sam-
ple standard deviation. Effectively we arrive at a factor k which
can be multiplied by the sample standard deviation to determine
the equivalent normal standard deviation as

σEN = kσ̃. (11)

Then k can be determined from

k =
√

1+N−1

√
N −1
χ2

N−1;α

√
1+

N −3−χ2
N−1;α

2(N +1)2 (12)

where N is the number of samples, χ2
N−1;α is the percentage

point function of a Chi-Squared distribution with N − 1 degrees
of freedom evaluated at α, where 1−α represents the desired
confidence level. For example, a 95% confidence level results in
α = 0.05. A TI-EN only depends on the sample mean, the sam-
ple standard deviation, a desired confidence level, and the num-
ber of samples, N. Because TI-ENs are constructed particular to
a specified confidence level like 95%, we sometimes associate
them with the confidence level, e.g., ”TI-EN95”.

Appendix B: Superdistribution (SD)
The Superdistribution (SD) method first starts by construct-

ing L number of distributions as an Ensemble of Normals (EON)
as described in [1]. Each Normal distribution in the EON is de-
fined as N (µi,σ

2
i ) for a candidate mean µi and candidate stan-

dard deviation σi. A candidate mean µi can be determined from

µi = µ̃+
Tiσ̃√

N
(13)

where Ti is a random sample from a Student’s t-distribution with
N−1 degrees of freedom. A candidate standard deviation σi can
be determined from

σi = σ̃

√
N −1

χ2
i

(14)
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where χ2
i is a random sample from a N − 1 degree of freedom

Chi-Square distribution. The SD will converge for a large num-
ber of L. A convergence study in [3] showed that L = 10,000
was sufficient for a converged SD.

Note that the PDF and therefore CDF are known for each
Normal distribution in the EON. Hence, the CDF of the SD can
be defined as

SDCDF(x) =
∑

L
i=1 Fi(x)

L
(15)

where Fi is the CDF of the ith distribution in the EON, which
is evaluated at x. This process is illustrated in Figure 15, which
shows that averaging the individual Normal CDF values at x =
1.5 yields the Superdistribution CDF value at x= 1.5. Evaluating
the CDF value of a Normal distribution at any input value x is a
standard function call in most software packages. The SD right-
tail probability for a specified threshold x in the SD’s right tail is
given by 1−SDCDF(x).
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Figure 15. Example of 10 Normal distributions in an EON. The Superdis-
tribution CDF value at x = 1.5 is calculated by averaging the CDF values
from each Normal distribution in the EON at x = 1.5.
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