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Abstract. Richtmyer-Meshkov Instability (RMI) is a complicated phenomenon that occurs
when a shockwave passes through a perturbed interface. Over a thousand hydrodynamic simu-
lations were performed to study the formation of RMI for a parameterized high velocity impact.
Deep learning was used to learn the temporal mapping of initial geometric perturbations to the
full-field hydrodynamic solutions of density and velocity. The continuity equation was used to
include physical information into the loss function, however only resulted in very minor improve-
ments at the cost of additional training complexity. Predictions from the deep learning model
appear to accurately capture temporal RMI formations for a variety of geometric conditions
within the domain. First principle physical laws were investigated to infer the accuracy of the
model’s predictive capability. While the continuity equation appeared to show no correlation
with the accuracy of the model, conservation of mass and momentum were weakly correlated
with accuracy. Since conservation laws can be quickly calculated from the deep learning model,
they may be useful in applications where a relative accuracy measure is needed.

1 INTRODUCTION

A Richtmyer-Meshkov instability (RMI) occurs when a shockwave amplifies perturbations at
a material interface, causing large jet-like growths [1, 2, 3, 4]. This phenomenon is similar to
Rayleigh–Taylor (RT) instabilities that occur at the interface of fluids with different densities.
An example RMI is shown forming in Figure 1 at an interface, which results in a jet that deeply
penetrates the neighboring material. The first image shows the initial interface at a high velocity
impact, and subsequent images show time increments of 0.1 𝜇s.

The use and understanding of RMI is important in niche applications. For example, exper-
imentally measuring RMI formations is useful for calibrating high strain rate material models
[5, 6]. Additionally, in inertial confinement fusion (ICF) experiments lasers are used to heat a
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Figure 1: Snapshots of density in time increments of 0.1𝜇s from left to right as an RMI forms.

fuel target with the hopes of starting a self-sustaining fusion reaction [7]. Unfortunately, RMI
have been known to form within the ICF capsules. The RMI often destroy the fuel target before
fusion ignition is achieved [8]. Thus, increasing our ability to design and control RMI could have
profound impacts in fusion research.

Hydrodynamic simulations can be used to understand how initial conditions (e.g., geometric
perturbations, shock velocities, materials) affect RMI growth. A designer may use optimization
techniques on these simulations to select initial conditions for a desirable RMI formation [9, 10].
This requires both time and a large number of computationally expensive simulations.

This work investigates whether machine learning can be used to accurately learn how RMI
form from varying initial conditions in hydrodynamic simulations. Predictions from machine
learning models could be significantly cheaper than hydrodynamic simulations [11]. If the ma-
chine learning models are accurate in capturing RMI formations, then perhaps they may be
useful aids for designers of complicated applications like ICF. Additionally, predictions from the
model will be significantly faster than a full-fidelity hydrodynamic simulation.

Over a thousand hydrodynamic simulations were performed by varying three initial geomet-
ric parameters of a high velocity impact. The particular configuration leads to multiple RMI
formations in a single simulation, where RMI formations interact with other neighboring RMI.
A deep learning model was trained to predict the full density and velocity fields, using the the
geometric and temporal components as inputs to the model. The model consists of the gener-
ator portion of Deep Convolutional Generative Adversarial Networks (DCGAN) [12] trained in
regression.

The machine learning model is treated as a black box, and it is not possible to directly
assess the accuracy of predictions without running a high-fidelity hydrodynamic simulation.
Basic first principle conservation laws are investigated to asses whether they may be used as
proxies for prediction accuracy. Violations in the continuity equation, conservation of mass,
and conservation of momentum can be calculated on the outputs of the black box. Therefore
these quantities can be quickly calculated without a full-fidelity hydrodynamic simulation. The
physical violations are then compared to the traditional 𝐿1 norm. If these physical violations are
correlated to error, then they may be used in adaptive sampling techniques based on an error
indicator [13]. The paper goes on to describe the parameterized hydrodynamic simulations,
machine learning model, training results, model predictions, and finally the comparison between
physical violations and error.

2 HYDRODYNAMIC SIMULATIONS

The geometric initial conditions of a high velocity impact was parameterized to study complex
RMI formations. A copper impactor is propelled toward a stationary copper target as shown in
Figure 2. The target is allowed to move freely after the impact. The impactor hits the target
at a velocity of 2.0 km/s. A sinusoidal perturbation was intentionally created on both sides of
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the target to seed initial RMI formations. The right perturbation is defined as

𝑥 = 0.1 cos(20𝜋
9

) (1)

and the impactor side of the target is defined as

𝑥 = 𝑏 cos(2𝜋𝑞𝑦
9

− 𝑠𝜋) (2)

where three variables (𝑏, 𝑞, 𝑠) are varied. Lucite is filled into the perturbation to make for
a flush interface between target and impactor. The three parameters change the amount of
material removed from the impactor side of the target, but not the end-to-end width of the
target. Figure 3 shows two different initial simulation domains by changing the three parameters
defining the impactor side of the target.

Figure 2: Experiment of copper impactor hitting copper target.

Figure 3: Two different initial conditions of the target. Left image has values of 𝑏 = 0.1714,
𝑞 = 14.0862, 𝑠 = 1.6492 and right has 𝑏 = 0.2365, 𝑞 = 5.7990, 𝑠 = 2.8509.

The impact was modeled using Arbitrary Lagrangian–Eulerian (ALE) hydrodynamics simula-
tions. The ALE calculations were performed using BLAST‡[14, 15] with second order elements.
The simulations take approximately a half hour to run to completion on a single NVIDIA V100
GPU. Copper is modeled using a Steinberg-Guinan strength model [16]. The calculations start
at the initial impact and end 7 𝜇s after impact.

A random Latin hypercube sampling was performed using bounds shown in Table 1 on the
three sinusoidal parameters defining the interface between target and impactor [17]. A total
of 1626 simulations completed successfully. Merlin was used to asynchronously run simulations
within a large HPC allocation on Lassen∗ [18].

For each simulation, the temporal full-field results were saved in 51 uniform increments from
0 𝜇s to 7 𝜇s. Field solutions for density 𝜌, velocity 𝑥, and velocity 𝑦 were saved, which is only
a partial view at the complex hydrodynamic state. These fields were evaluated on the high

‡https://computing.llnl.gov/projects/blast
∗One node of Lassen contains one IBM Power9 with four NVIDIA V100 GPUs. https://hpc.llnl.gov/hardware/compute-

platforms/lassen
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Table 1: Sampling bounds on the geometric parameters defining the impactor-target interface.

Parameter Lower bound Upper bound
𝑏 0.1 0.25
𝑞 5.0 25.0
𝑠 0.0 3.14

order elements using a fixed cartesian grid of 1024×1024. This results in a dataset of temporal
full-field simulation results. The dataset consists of 1626 simulations, 3 fields, 51 time steps per
field, on a 1024×1024 grid. There are 260,862,640,128 single precision floats in total taking up
0.96 TB on disk.

3 DEEP LEARNING MODEL

A machine learning problem can be described to learn the mapping from [𝑏, 𝑞, 𝑠, 𝑡] (our three
sinusoidal parameters and time) to the three physical fields. The generator from the DCGAN
[19] architecture was used to learn this relationship. The model uses deconvolutional layers
(sometimes also called inverse convolutional, or transposed convolution [20]). Once trained,
the deep learning model can be used to quickly visualize full-field solutions for any given time.
Inference from a trained model may also be useful to quickly solve inverse problems (e.g., finding
the temporal solution given a field, or partial solution), because the machine learning model will
be many times faster than a hydrodynamic simulation.

Unlike the DCGAN work that uses both discriminator and generator, our work only uses the
generator. Our data is perfectly labeled, meaning we have the small vector state that defines
the results for any of our simulations. However, many GAN applications are unsupervised, and
attempt to learn latent representations of the unknown vector state. Knowing the inputs to
each simulation allows us to apply supervised regression to this problem. The objective of the
machine learning model is to learn the mapping from this small vector state to the simulation
results. As an added benefit, not having to train both discriminator and generator greatly
simplifies training. Unfortunately using the generator only may result in less capability than a
GAN model, since the inputs to our model may only be our parameterized initial conditions.

A separate generator model was used for each field, as shown in Figure 4. A single optimizer
was used to train the three models simultaneously with a mean absolute error (𝐿1) loss function.
The 𝐿1 error in each physical field was normalized via the field’s maximum observed range (e.g.,
max(𝜌) −min(𝜌)).

We attempted to use a single generator model with three image channels, rather than a sepa-
rate generator model for each physical field. Our experiments showed that it was easy to train a
model with multiple image channels per field if the physical fields were strongly correlated, then
the predictions would be reasonably accurate for each field. However, performance deteriorated
quickly when fields were poorly correlated. For example, a model with two image channels, one
for density and one for velocity 𝑦, could only reasonably replicate one of the two fields. While
using a separate model for each physical field is not necessarily the most efficient, it does allow
for the learning of a wide variety of full-field solutions that do not require correlation in a single
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Figure 4: Overview of the deep learning model. The inputs define the sinusoidal shape of the
copper target and the time after impact. Three generator models are trained in regression where
each model independently learns one of the three fields. A single optimizer trains the models
simultaneously. The output from each model is a 1024 × 1024 physical field.

training routine.
The model architecture is shown in Figure 5, again based on the generator from [19] with

batch norm [21] and ReLU activations [22]. The initial kernel was 4 × 4, and the number of
channels ranged from 512 to 32. The hyperbolic tangent function was used as the final activation,
immediately followed by a linear transformation that maps [−1, 1] to the range of the physical
field (e.g., [min(𝜌),max(𝜌)]). This is used in the model because it is desirable for the outputs to
be in real physical units in order to directly apply first principle conservation laws.

Figure 5: The convolution neural network architecture of the generator model starts with a 4×4
kernel. Each subsequent layer doubles pixels until the final 1024 × 1024 field is created.

The model is implemented using PyTorch [23]. Training is performed using Adam with a
learning rate of 7e-4 [24]. It is possible to train the model in one hour with distributed data-
parallel training [25, 26]. The models were trained for 500 epochs using 160 NVIDIA V100 GPUs
on the Lassen HPC. Ten percent of the simulations were left-out of the dataset for testing.

Given that our model outputs the density, velocity 𝑥, and velocity 𝑦 fields at any temporal
solution, it is possible to include a physics based term in the loss function [27]. Considering the
model is predicting the full density and velocity fields, a reasonable physics equation to consider
is

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑢) = 0 (3)
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which is known as the continuity equation [28]. Combining the general 𝐿1 norm with the
continuity equation, we arrived at the following loss function

𝐿 = 1
1

𝑛
∑
𝑖
|𝑦𝑖 − ̂𝑦𝑖| + 𝜆𝑐|

𝜕𝜌
𝜕𝑡

+ ∇ ⋅ (𝜌𝑢)| (4)

where the left term represents the general 𝐿1 norm, and the right term represents the 𝐿1 penalty
on the continuity equation violation. The 𝜆𝑐 term is a penalty parameter to help balance the
two errors. General automatic differentiation is used to compute the temporal derivative in the
continuity equation. The divergence is computed using using a Sobel operator (discrete spatial
derivative) with Kornia [29].

4 TRAINING RESULTS AND PREDICTIONS

Training of the model was performed with and without the physics-based penalty on the
continuity equation violation (i.e., 𝜆𝑐 = 0). Loss vs epoch curves are shown in Figure 6. The
curves show the 𝐿1 training error in density, velocity 𝑥, velocity 𝑦, and continuity equation.
Despite not including the physical term in the loss function, initially the continuity equation
error improves rapidly as the predictions improve. However, after approximately epoch 150 the
continuity equation error gets worse as the other fields continue to improve. This is depicted
in the left plot of Figure 6. When the physical error was included into the loss function, it was
observed that both the physical field errors and continuity equation errors continue to improve
with training. After training, the errors in density, velocity 𝑥, and velocity 𝑦 are comparable
with and without the continuity equation violation. However, the continuity equation violation
shows over two orders of magnitude improvement when it was included into the loss function.

Figure 6: Training error for each physical field and continuity equation violation. Left shows
no continuity equation penalty (i.e., 𝜆𝑐 = 0), right includes the physics informed penalty using
𝜆𝑐 = 0.001.

Finding an appropriate penalty parameter is crucial to successfully apply the physical con-
straint. If the penalty parameter was too large, then the deep learning model would quickly
solve the continuity violation by trivially predicting zero velocity and zero density everywhere.
Table 2 shows the 𝐿1 error on the physical fields of the left-out testing data and different 𝜆𝑐
values. It is seen that as 𝜆𝑐 increases, the 𝐿1 error on the physical predictions also increased.
Despite improved continuity equation violations, the predictions in density and velocity actu-
ally worsened. While technically the most accurate model occurred with 𝜆𝑐 =1e-4, it was only
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marginally better than not including the continuity equation at all (𝜆𝑐 = 0). It should also be
noted that too large of a penalty parameter (i.e 𝜆𝑐 ≥ 0.1) would result in predictions that were
less accurate than not including the continuity equation at all.

Table 2: Table of MAE on the left-out testing fraction of the dataset for different 𝜆𝑐 penalty
parameters.

LR 𝜆𝑐 MAE (𝐿1) Test
7e-4 0.0 0.005584
7e-4 1e-4 0.005537
7e-4 1e-3 0.005746
7e-4 1e-2 0.005927
7e-4 1e-1 0.006209

A continuation method could potentially work well to automatically adjust the penalty pa-
rameter during training. At early epochs the penalty could be ignored, and then gradually
increased as training progresses. This was not attempted, as our current scope was to investi-
gate whether the physics violations infer model inadequacy, however the continuation approach
may help to avoid the manual tunning of a penalty parameter in future work.

The deep learning model’s density predictions are compared to simulation data at four ran-
domly selected points from the left-out set in Figure 7. Predictions from penalty parameters
ranging from 𝜆𝑐 = 0.0 to 𝜆𝑐 = 10−2 all appear quite similar to each other, and all reasonably
agree with the simulation results. There is some noticeable fine detail loss when comparing
model predictions to the simulation data, which is perhaps most noticeable in the second col-
umn where small holes form in the copper impactor. The predictions from a larger penalty
parameter of 𝜆𝑐 = 10−1 are noticeably worse than the smaller penalties. This agrees with the
mean absolute error scores in Table 2, where too large of an emphasis on the model’s ability to
satisfy the continuity equation degrades performance.

The deep learning model has several advantages over the full hydrodynamic simulations.
For instance, the model is capable of predicting any instance in time, while the hydrodynamic
solutions need to be solved from the initial impact time. Using a single NVIDIA V100 GPU, in-
ference from the model takes only 7 ms, while the full hydrodynamic simulation takes 30 minutes.
The deep learning model can be run quickly on laptop CPU, where the dataset of simulation
results and hydrodynamic code require HPC resources. These advantages do come at a cost of
reduced accuracy and detail loss when compared to a full-fidelity hydrodynamic solution. The
least accurate predictions were noted to occur in extrapolation at the corners of our sampling
domain.

5 CORRELATIONS OF ERROR AND PHYSICAL VIOLATION

Scatter plots of the continuity equation violation vs 𝐿1 error of the predictions in the left-out
simulations is shown in Figure 8 for 𝜆𝑐 = 0.0 and 𝜆𝑐 =1e-3. There does not appear to be a
correlation between the continuity equation violation and the error in the predictions of density
and velocity. The results for all other 𝜆𝑐 values followed a similar pattern. This is unfortunate
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Inputs [𝑏 = 0.12, 𝑞 = 13.2, [𝑏 = 0.22, 𝑞 = 23.9, [𝑏 = 0.20, 𝑞 = 13.1, [𝑏 = 0.16, 𝑞 = 23.1
𝑠 = 1.36, 𝑡 = 3.92] 𝑠 = 1.74, 𝑡 = 6.86] 𝑠 = 0.11, 𝑡 = 1.13] 𝑠 = 1.05, 𝑡 = 5.18]

Truth

𝜆𝑐 = 0.0

𝜆𝑐 = 10−4

𝜆𝑐 = 10−3

𝜆𝑐 = 10−2

𝜆𝑐 = 10−1

Figure 7: Figure of predictions and truth for four random points in the left-out set. Predictions
are shown with 𝜆𝑐 penalty values ranging from 0.0 to 10−1.

because if the two values were strongly correlated, then the continuity equation violation could
perhaps be used to assess prediction accuracy. The correlation coefficient was 0.08 without the
physics penalty and -0.06 with the penalty.

Since the simulation was computed on a closed domain (i.e., no inflow or outflow of mass),
it is also possible to compute the temporal violation in conservation of mass and momentum.
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Figure 8: Continuity equation violation vs mean absolute error on the left-out simulations. Left
plot shows no continuity equation penalty (i.e., 𝜆𝑐 = 0), right includes the physics informed
penalty using 𝜆𝑐 = 0.001.

Thus for a given input condition [𝑏, 𝑞, 𝑠], the total mass in this model can be expressed as

𝑚(𝑡) = 1
𝑛𝑦

1
𝑛𝑥

𝑛𝑦

∑
𝑖

𝑛𝑥

∑
𝑗

𝜌𝑖,𝑗(𝑡) (5)

because the volume is fixed. Additionally the total momentum can be expressed as

𝑝(𝑡) = 1
𝑛𝑦

1
𝑛𝑥

𝑛𝑦

∑
𝑖

𝑛𝑥

∑
𝑗

∇ ⋅ (𝜌𝑖,𝑗(𝑡)𝑢𝑖,𝑗(𝑡)) (6)

where 𝑢 is the velocity field. An ideal machine learning model would preserve the conservation
of mass and momentum to a comparable level of the hydrodynamic simulation.

The mass and momentum should be conserved quantities with respect to time. Thus, one way
to assess how well the deep learning model conserves these quantities is to study the temporal
variance in mass and momentum. The variance of a quantity 𝜓(𝑡) is expressed as

Var(𝜓(𝑡)) = 1
𝑛𝑡

𝑛𝑡

∑
𝑖

(𝜓(𝑖) −Mean(𝜓(𝑡)))
2

(7)

where the summation is over the 51 temporal realizations. A zero value for mass variance or
momentum variance would be an indication that the model is conserving the quantity with
respect to time.

The variance in conservation of mass is shown against the prediction error in Figure 9.
Whether the physical penalty on the continuity equation was included in the loss function made
little overall difference. Both cases resulted in weak correlations of 0.2.

The variance in conservation of total momentum is shown against the prediction error in
Figure 10. There was very little difference when the the physical penalty was included into the
loss function. Like with conservation of mass, it seems that using conservation of momentum is
also a poor indicator of the prediction accuracy. The correlation coefficients were only around
0.15.

These weak correlations unfortunately indicate that variance in mass and momentum are poor
indicators of the prediction accuracy. It was desired to have a cheap and reasonable assessment of
prediction accuracy using only first principle physics. These types of error assessments could be
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Figure 9: Conservation of mass reflected as the temporal variance vs mean absolute error on the
left-out simulations. Left plot shows no continuity equation penalty (i.e., 𝜆𝑐 = 0), right includes
the physics informed penalty using 𝜆𝑐 = 0.001.

Figure 10: Conservation in total momentum reflected as the temporal variance vs mean absolute
error on the left-out simulations. Left plot shows no continuity equation penalty (i.e., 𝜆𝑐 = 0),
right includes the physics informed penalty using 𝜆𝑐 = 0.001.

computed without needing to run full hydrodynamic simulation. However, perhaps the physical
violations may still be useful as an error indicator in an adaptive sampling strategy similar to
gLaSDI [30], where larger physical violations could indicate regions of the design space requiring
additional sampling.

6 CONCLUSION

Machine learning models can produce reasonably accurate RMI predictions, that are signif-
icantly cheaper than running high-fidelity hydrodynamic simulations. The continuity equation
can be included into the loss function for training machine learning models that are based on
predicting density and velocity fields. A penalty parameter is needed to balance the contribu-
tion from both the physical and accuracy terms in the loss function. While it is common belief
that the inclusion of physical knowledge into machine learning models will result in increased
accuracy, our results leave much to be desired. The inclusion of the continuity equation into
the loss function did not offer much overall improvement in the accuracy of predictions, while
significantly increasingly training complexity and overhead. It is unclear why satisfying the
continuity equation did not improve predictions. Our application did have a large amount of
physics-based data, thus perhaps the inclusion of physical terms like the continuity equation
could only offer marginal improvement over data driven methods.

For certain applications, it is important to assess the accuracy of black box predictions.
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Violations in first principle physical laws should be able to infer the accuracy of a machine
learning model that predicts physics-based solutions. Unfortunately it does not appear that
violations in the continuity equation, conservation of mass, or conservation of momentum can
be used to strongly assess the accuracy of a model predicting RMI formations.
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