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Abstract A methodology is presented to fit material parameters in finite element
(FE) models using full displacement field data. Four bulge inflation tests were per-
formed on a PVC-coated polyester material. Digital image correlation (DIC) was
used to capture the full displacement field of the material. An inverse analysis was
set up to find material parameters in a FE model which replicated the full displace-
ment field of the experimental test. Two different objective functions were consid-
ered to quantify the discrepancy between the FE model and test data. One function
considered equal weight among displacement components, while the other function
weighted the discrepancies to balance different displacement components. The result-
ing parameters, for isotropic and orthotropic models, were heavily dependent upon
which objective function was chosen. Additionally, cross validation was performed
to select between the two material models. Similar to the material parameters, the
cross validation results preferred different material models depending upon which
objective function was being used.

Keywords Inverse analysis - Objective functions - material parameter identification

1 Introduction

The finite element (FE) method has become an important design tool for membrane
structures, and selecting material parameters to represent complex material behavior
is a difficult task. This is especially true for the most complex and non-linear ma-
terials including coated woven fabrics. Inverse analyses, or iterative schemes for FE
model updating (FEMU) have been used to find material parameters from complex
load cases. In this paper, two different objective functions were investigated when
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estimating material parameters from bulge inflation tests on PVC-coated polyester.
Objective function refers to how the discrepancy between the FE model and test
data is quantified, and material parameters are typically selected to minimize this
function. The objective function has an important effect on the material parameters
selected using this type of inverse analysis (Zhan et al., 2011} |Jekel et al.| [2019; |Tam|
3020).

PVC-coated polyester is a coated textile. It’s most commonly modeled as a con-
tinuous, homogeneous, orthotropic material (Shaw et all [2010)), which is largely
dependent on the warp-to-fill stiffness ratio (Dinh et al., [2017). The typical weave
has the warp yarns pulled taut, while the fill yarns are woven in-between the warp
yarns. The fill yarns run orthogonal to the warp yarns. Various non-linear models
have been used in an attempt to better describe the behavior of the material.
land Luchsinger| (2009)) proposed a non-linear material model based on the load ratio
between the material warp and fill directions. |Ambroziak and Klosowskil (2014]) used
a piecewise linear orthotropic model, and |Jekel et al.| (2017) used polynomials to
describe the non-linear elastic behavior of the material.

Biaxial tests are commonly used to characterize material parameters for struc-
tural membrane materials (Stranghéner et al, 2016). Several studies
[2001} |Charalambides et al.| [2002; Machado et al.||2012; Tonge et al.,[2013) have used
bulge (or bubble inflation) tests to induce an equal biaxial load on the material. These
bulge tests typically involve inducing a pressure on one side of a circularly clamped
membrane material. The equal biaxial load occurs at the apex of the deflected mem-
brane for an isotropic material. The measured pressure and displacements are then
used to infer material parameters, by comparing the results to a FE simulation.

A variety of applications (Becker et al.,[2012} Murienne and Nguyen), [2016} Mejia
[and Lantsoghtl 2016} |Chisari et al.l [2017) have used Digital image correlation (DIC)
as non-invasive deformation measuring technique. The technique uses the correlation
between consecutive images, from multiple cameras, to calculate a full 3D displace-
ment field. For bulge tests, DIC is an ideal tool to obtain a full 3D displacement field
while not interfering with the inflation or deflection of the membrane material.

Material parameters in various models have been identified using FEMU
et al. 1993} [Cailletaud and Pilvin}|[1994} [Drass and Schneider} [2016)). The process can
be generalized by using optimization to find parameters in a FE model that minimize
the discrepancy between the model and experimental data (Asaadi et al., [2017). In
a forward problem parameters can be directly inferred from an experimental test.
While an inverse problem iteratively updates the FE model to find parameters that
lead to responses that resemble the experimental response . This
process is often referred to as model calibration.

Model calibration can be performed using deterministic or probabilistic meth-

ods (Lee et al [2019). A deterministic model calibration does not include the mea-

surement uncertainty, while probabilistic method can account for both model and
experimental uncertainty. stated that models calibrated determin-
isticly do not account for material uncertainty, and thus may result in unreliable
solutions. The uncertainty of the experiments needs to be quantified in order to cal-
ibrate material models probalistically. Unfortunately, DIC displacement field data is
typically treated as a black box where the uncertainties are not well understood. The
bulge inflation tests is particularly challenging having out-of-plane displacements on
the curved material surface. While it may be more reliable to calibrate the mate-
rial model parameters using a probabilistic method, this work uses a deterministic




Effect of Weighting Full-field Residuals when Fitting Material Model Parameters 3

method because the uncertainty due to DIC errors of the displacement measurements
is currently unknown. However, the experimental measurements are made available,
so that a probabilistic calibration can be performed in the future.

There are many different choices of possible objective functions to calibrate ma-
terial models. |Zhan et al.| (2011) proposed the EARTH method to calibrate model
parameters into phase, magnitude, and slope errors from time history data. A sin-
gle DIC bulge inflation test may generate over a hundred thousand unique time
histories. In order to apply EARTH, each of these time histories would need to be
broken into their respective errors and treated as separate objective functions in a
multi-objective optimization. This process to compute the objective functions may
be computationally expensive with lots of full-field data.

The previous studies (Rachik et al.l [2001; |Charalambides et al., |2002) used only
the height to determine material parameters from bulge inflation tests. [Machado
et al.| (2012)) used curvatures to determine a stress tensor from bulge inflation tests
to infer material parameters for an elastic material. While these previous methods
work well for a planar isotropic material, they are difficult to extend to a directional
dependent woven textile like PVC-coated polyester. |Jekel et al.| (2016) showed that
it was possible to use the displacement field of a bulge test to select parameters for
a non-linear orthotropic material model using simulated experimental data. |Jekel
(2016) then used this process on polynomial displacement fields fitted to experimental
data at selected inflation pressures. These polynomial surfaces introduce an extra
layer of error in the material parameters. This work will find material parameters by
fitting the full experimental displacement field directly. A new approach is describe
which allows for any data point in the experimental displacement field be compared
to a FE model, for any initial surface location and inflation pressure. While (Jekel
et all |2016) considered the discrepancy in the x,y and z displacements fields to be
equal weight, the objective function was dominated by the z displacements which
were an order of magnitudes larger than the x and y components. Therefore, this
work explores the effect of weighting down the z discrepancy.

This work also investigates using cross validation to select the best material
model when performing FEMU. The idea is that cross validation could be used
to determine whether the isotropic or orthotropic material model generalizes the
PVC-coated polyester better in the complex load case. This is especially important
for PVC-coated polyester, which is not a homogeneous (or continuous) material,
but modeled as one in the FE method. Cross validation was performed using the
two different objective functions described to select material parameters from the
experimental data.

2 Methods

Bulge inflation tests were performed using DIC on PVC-coated polyesterﬂ A FE
model was created to replicate the boundary conditions of the bulge inflation tests.
Two different objective functions are described. Each objective function represents
a different method to quantify the difference between the experimental data and

1 An online repository is available at https://github.com/cjekel/inv_bubble_opt| which
includes the source code to perform the inverse analysis, test data, and procedures to reproduce
this work.
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Fig. 1 Bulge inflation test overview.

FE model. The process to perform the inverse analysis is briefly described. Cross
validation is also discussed as a method for selecting material models in this scheme.

2.1 Experimental tests

The bulge inflation tests involve clamping a sample of membrane material into a
circular clamp. Pressure is then induced on one side of the material. The material
deflections were recorded using DIC. The DIC system used was the StrainMaster
with DaVis (LaVision GmbH] [2014), which was capable of syncing the inflation
pressure with the recorded images. A visual representation of a bulge inflation test
is provided in Figure

Four bulge inflation tests were performed at Stellenbosch University in South
Africa. Details of the process and test fixture are found in section 5.1 of (Jekel, |2016)).
The diameter of the circular bulge test was 200 mm. The PVC-coated polyester tested
was Mehler Texnologies VALMEX® 7318 (the same material tested in(Jekel et al.,
2017)). Four samples of material were cut from the same roll, with each sample being
a 250 mm square. Spray paint was added to the surface of each specimen, with a
random pattern, to increase the surface contrast of the material for DIC processing.
Each test was inflated from zero to three bar, by manually opening a compressed air
valve to the bulge inflation test fixture. This resulted in each test being inflated at
a unique load rate as seen in Figure El The internal pressure was recorded with a
Festo SPTE-P10R-S4-V-2.5K pressure transmitter.

Full field bulge inflation tests generated a large amount of data as shown in Ta-
ble [1} The xy-plane was oriented with the surface of the material prior to inflation,
with the x direction occurring in the warp material direction, while the y direction
occurred in the fill material direction. The material was inflated in the z direction.
The number of data points ranged from test to test. The variation was largely de-
pendent on how finely the DIC data was processed. Here the largest test generated
nearly two million data points, while the smallest test generated only two hundred
thousand data points. Each data point represents a unique combination of inflation
pressure p and initial x,y location. There are three deformations recorded for each
data point, represented as separate Ax,Ay, and Az values.

The DIC techniques were not perfect, as there are missing data points in some of
the test. This happens when correlations is lost between images, and becomes more
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Fig. 2 Pressure time curves from each bulge inflation test.

Table 1 Number of unique (x,y,p) data points from each test and inflation pressures.

Test  # of data points

I 1,836,961
2 729,718
3 1,201,509
4 289,312

evident with larger deflections. Additionally, the severity of missing data varies from
test to test. Figure |3 shows each x,y data point at the last inflation pressure of each
test, where each colored pixel is a DIC data point. The spacing of the x,y data points
vary from test to test as a result of different DIC processing While Tests 1 and 2
have the highest density of data points, Test 1 doesn’t have any missing data points
while test 2 has several small holes on the surface of the material. The worst of the
missing data occurs with test 3, which has large holes on one quarter of the test.
Test 4 only has two small holes on the surface of the data, and also has the least
number of x,y data points on the surface of the material.

2.2 Finite Element model

An implicit non-linear FE model was constructed in ABAQUS which resembled the
physical boundary conditions of the bulge inflation test. Sheplak and Dugundji| (1998)
described differential equations to solve for the displacement field of bulge inflation
tests for isotropic and orthotropic material models, but (Sheplak and Dugundji, [1998))
was not used as the geometry is simple enough to quickly construct in any non-linear
FE code. The FE model uses an implicit solver, with 201 load steps between zero and
three bar. Each load step uses adaptive time stepping. The adaptive time stepping
allows the model to solve a single load-case in one step, or cut back to smaller
increments if needed. Over 900 linear Q4 membrane elements are used to represent
the surface of the material. The linear elements prevent nonphysical out-of-plane
force imbalances. The displacement field at the nodes of the FE solver are exported
to be used in further calculations when the model is run with a given material model.

The displacement field of the FE model needs to be computed several times
at various pressures which correspond with the pressures of the experimental data.
Either load steps can be added to the FE model at the exact experimental pressures,
or the displacement field of the FE model can be interpolated to match the exact
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Fig. 3 Plots of the x,y data points of each bulge inflation test. The darker color is related to
having a higher density of data points.

experimental pressures. Interpolation was chosen since it didn’t involve manually
editing the input deck for each test, and resulted in a fixed number of exported
displacement fields. Specifically linear interpolation was used to evaluate the FE
model’s displacement at the nodes for the exact pressures of the experimental test.
Linear interpolation is use to solve the displacement field A (x,y, p) by interpolating
the displacement field at the two nearest pressures as

Aloy,p) = Ay, p1) _ AWy pa) =A%, p1) (1)
p—p P2—pi

where p, and p; represent the nearest pressures of the FE models’ load steps.

Overall, the linear interpolation scheme proved very accurate when interpolating
between the FE model load steps. The linear interpolation accuracy was compared
to FE models with load steps halfway in-between the previous 201 load steps (rep-
resenting the worse possible interpolation case). The linear interpolation error was
negligible, with the interpolation error following on the order of single precision
(1078 mm) numerical noise. This level of single precision was the same level of pre-
cision used by the FE model.

Linear isotropic and orthotropic material models were investigated. An isotropic
model with one unknown parameter (stiffness modulus E), and an isotropic model
with two unknown parameters (stiffness modulus E and the shear modulus G) were
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considered. The orthotropic model was simplified as a three parameter mode, with
parameters for the stiffness moduli (E; & E»), and the shear modulus (G12). The one
parameter isotropic model and the orthotropic model use a Poisson’s ratio of 0.24
as measured in . Using a constant Poisson’s ratio simplifies issues
with gradient magnitudes, as it is anticipated that gradients of Poisson’s ratio could
be orders of magnitude different than stiffness moduli.

The displacement field of the FE model for an orthotropic material model at
2.0 bar is shown in Figures [4] through [f] The maximum Az value is about ten times
larger than the Ax or Ay values. Radial Basis Functions (RBF) are used to interpolate
the displacements from the initial (x,y) node locations at each outputted pressure.
The RBFs are exact at the node locations, and result in a smooth displacement field
from the linear four node FE elements. The InterpolateSimpleRBF object construct
these RBFs to the full displacement field of the FE analysis. The RBFs were inspired
by the SciPy rbf function (Virtanen et al.l [2020)).

y (mm)

—754

—100 T T T T T T
-100 -75 =50 -25 0 75 100
x (mm)

Fig. 4 Displacement Az of FE model at 2.0 bar with orthotropic properties E; = 0.8 GPa,
E, =0.15 GPa, G =0.025 GPa, and vi; =0.24.
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Fig. 5 Displacement Ax of FE model at 2.0 bar with orthotropic properties E; = 0.8 GPa,
E; =0.15 GPa, G, =0.025 GPa, and v, =0.24. Note the symmetry about x =0.

The radial basis functions are expressed as

y=AX (2)
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Fig. 6 Displacement Ay of FE model at 2.0 bar with orthotropic properties E; = 0.8 GPa,
E; =0.15 GPa, Gj; =0.025 GPa, and v;; =0.24. Note the symmetry about y =0.

where
llzr =12 [|T2—21[|2 -+ |20 —21]]2
[lz1 — @22 [|22 — 222 -+ |20 — 22| ]2
= (3)
21 —xall2 [|2 —2nll2 -+ |20 —all2

which follows a simple linear kernel (Broomhead and Lowe, [1988). The RBF param-
eters A are solved for a general input of @, output of y, with n data points. Then 7
predictions are generated for new & locations as

g=Ax (4)
where
1 —Z1[|2 22— 21]]2 -+ [0 — 2112
- e =222 [le2 =222 -+ |Jn —22]]2
A= . ) (5)
llx1 —Zall2 llx2 —Zall2 - |20 — &a|2

For this problem, x refers to the in-plane (x,y) location of the FE model nodes, &
refers to the in-plane (x,y) location of the DIC data, y denotes the displacement from
the FE model, and g represents the experimental displacements. This type of RBF
is ideal for interpolating surfaces of FE models since it is exact at node locations,
and results in a smooth interpolation in-between the FE node locations.

2.3 Objective functions

The objective function which quantifies the discrepancy between the physical bulge
inflation tests and the FE model difference is fundamental for the optimization in the
inverse analysis. The average absolute deviation between the x displacement of the
FE model and inflation test is denoted ra,(j,3) for the j test and 3 set of material
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parameters. These average absolute deviations are expressed as

. 1 &
rAx(]n@) = ni Z |Ax(xi»)’i»l7i)z _Ax(xi:yi:piaﬁ)f| (6)
Ji=1
. 1 ¢
rA_V(.]JIB) = I’T Z |A)’(xi7)’i7pi)z —AY(xi;yi;Pi,ﬁ)ﬂ (7)
Ji=1
1
rAZ(.] ﬂ Py Z ‘AZ xt7yt7p1) AZ(xi;yi;Pi,ﬁ)ﬂ (8)

Ji=1

where n; is the total number of data points in the j test. A simple discrepancy is
then formulated as the average L; distance in mm as

oB) = LY raclisB)+ 7.8+ 7l ) )
rj

where n, is the total number of tests. The subscripts ¢ is for the physical inflation
test data, while the subscript f is from the FE model.

The formulation of e considers the discrepancy in the x, y, and z directions to
have an equal weight. This formulation could be problematic if the discrepancy in one
displacement components dominates the others. In the bulge inflation test data, the
Az component was roughly ten times larger than the in-plane (x or y) components.
This creates the potential for the rj, discrepancies to be larger than the other two
directions, because the Az values have the potential to be at least ten times larger
than Ax or Ay.

A second objective function is proposed as e, to deal with the imbalance between
the maximum in-plane and out-of-plane displacements. The function is just a slight
modification of e, and is expressed as

ew(B) = - Y rai.B) 4 ray(G8) + wra . ) (10)
rj

where w is a weighting componentEl While there can be many ways to select w, a
simple scheme was chosen as

1 max (Ax(j)) +max (Ay(j))
nt; 2max (AZ( ))

(11)

which represents the ratio of the average x and y displacement to the maximum z
displacement. This resulted in w = 0.1 for the bulge inflation tests in consideration.

Two different objective functions are presented to quantify the difference between
the full displacement field of the FE model and DIC tests. One objective function is
an average L; norm between the x,y,z displacements, while the other function is a
relative L; which considers the weighted difference between x,y and z displacements.
A zero for both functions would indicate that the FE model’s displacement field
exactly matches the experimental data.

The optimization requires the objective function e or e,, to be computed multiple
times. There are many steps required to automate this using software, and the process

2 The software available online allows a weight to be specified for each directional component
of the displacement field.
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is described in Table [2| Several Python functions were created to interface with the
the ABAQUS solver and post processor for this application. The function essentially
returns e or e,, from inputted material parameters.

Table 2 Process to compute the objective function for given material parameters.

tep  Description

S
1 Write the material model parameters to the ABAQUS input file
2 Run ABAQUS solver on the input file
3 Run ABAQUS post processor to export displacement field of FE model
4 Load the FE displacement field into memory
5 Compute the discrepancy between FE model and DIC data:
i) Linearly interpolate the FE model to match the pressures of the bulge test data
ii) Construct and evaluate RBFs to the FE model displacement field
iii) Compute ray, ray, and ra, for each set of test data
6 Compute the final objective function of e or e,

2.4 Optimization

The inverse analysis is the process of finding the material parameters of the FE model
to match the bulge inflation test data. The optimization problem can be stated as

minimize: e(3) (12)
subject to: By < B < By, k=1,2,---,n,. (13)

where (3 is the vector of material parameters which are restricted to some reasonable
lower and upper bounds. The isotropic parameters are expressed as 8 = (E) or 8 =
(E,G), and the simplified orthotropic parameters are expressed as 3 = (E1,Ez, G12).
Note that e, is substituted for e when minimizing the weighted objective function.
The first optimization strategy used a global optimizer with an allocated number
of function evaluations. When the global optimizer exhausted the specified budget,
a local optimizer was used for final convergence to a local optimum. The global
optimization strategy used was Efficient Global Optimization (EGO), which utilized
the expected improvement from a Gaussian process to minimize the function

et al., [1998; [The GPyOpt authors, 2016). A variant of the BEGS (Broyden) 1970

Fletcher} [1970} |Goldfarbl (1970} |Shannol [1970) gradient based optimization was used

as the local optimizer (Virtanen et al., 20205 Byrd et all, [1995). Initially 50 EGO
function evaluations (calculations of e) were performed before switching to the BEGS
implementation. A budget of 200 function evaluations for the BFGS appeared to be
sufficient at finding a local optimum.

After several runs of the EGO to BFGS strategy, it became evident that the
optimizer was failing at finding a global optimum. A multi-start optimization strat-
egy was adopted to better deal with the presence of multiple local minima. The
multi-start process ran five BFGS optimizations from different starting points in
the design space (Schutte et al) [2006)). Each of the five BFGS runs were limited
to either 200 function evaluations, or satisfying the convergence criteria. Converge
considered either relative changes in the objective function, absolute changes in the
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objective function, or gradient magnitude. This multi-start optimization was able to
consistently find better optimums than the EGO to BFGS strategy, but at the cost
of additional objective functions.

There is the possibility that some combination of material parameters may cause
the FE analysis to not converge. This is problematic when the optimization algo-
rithm requires a discrepancy for a particular set of parameters that lead to failed
convergence. To deal with this problem, the maximum objective value from the run-
time history was passed to the optimization algorithm when the FE analysis failed to
converge. Additionally, a discrepancy value of 30 mm was passed if the first function
evaluation in a given run failed to converge. This strategy works well with EGO,
however it creates a non-differential objective function which can be problematic for
gradient based optimization algorithms. There are also problems with the use of a
L; based objective function, where gradients can vanish when the residual of a single
points goes to zero.

While there were a number of potential issues using gradient based optimization
with this application, in practice the gradient optimization was able to successfully
minimize the objective function. Looking at the optimization history, the FE analysis
would only fail to converge during the line search stage of the gradient based opti-
mization algorithm, and not the finite differences which approximate the gradients.
This is less problematic because the gradients were accurate. Lastly, there were no
observed issues with the optimization caused by the L; objective function.

2.5 Cross validation

Cross validation is a model selection or validation tool used in various regression
problems to assess the quality of models (Queipo et al. [2005). Cross validation
provides for a nearly unbiased estimate of the modeling error, and can be used to
diagnose overfitting or bias errors. Cross validation can be used to compare the
performance of one material model to another in the context of fitting material
models with an inverse analysis (FEMU). This may be important in practice when
the ideal material model is unknown. In this case, cross validation will be used to
quantitatively compare how the linear isotropic and orthotropic material models
represent the behavior of PVC-coated polyester from these bulge inflation tests.
The processes proposed is similar to leave-one-out cross validation, and is de-
scribed in Table [3] This cross validation score was computed for both the linear
isotropic and orthotropic material models. The model with the lower cross validation
score is assumed to be a better generalized representation of the material behavior.

Table 3 Process to compute leave-one-test-out cross validation error.

Step  Description

1 Perform optimization without test j

2 Calculate the discrepancy e or e, on the left-out test j

3 Repeat 1 & 2 for all tests

4 Cross validation score is the average discrepancy e or e, from the left-out tests
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3 Results

Inverse analyses were performed on the bulge inflation tests to find material pa-
rameters for the linear isotropic and linear orthotropic models. The results show
parameters when each test were fit separately (such that n, = 1). Lastly, the cross
validation errors were computed by fitting parameters to all combinations of the
three tests (n, = 3). The focus of the results is to demonstrate the effect of the two
objective functions.

3.1 Linear isotropic material model

Resulting parameters for the single parameter (E) linear isotropic material model are
found in Table [4] and results for the two parameter model (E and G) are shown in
Table[5] The one parameter model used a Poisson’s ratio of 0.24, while optimization of
the two parameter resulted in a Poisson’s ratio near 0.5. Effectively the shear modulus
in the two parameter model approached the lower limitEl, and the FE model is unable
to run when the Poisson ratio exceed 0.5. Poisson’s ratio appears to significantly
effect the stiffness modulus E, in which the one parameter model resulted in a larger
stiffness modulus. For both models there was little difference between parameters
from minimizing e or e, with the first test. The second and third test produced
larger stiffness moduli when minimizing e,,, and the degree of the increase was larger
with the one parameter model. In general, it appeared that minimizing e,, resulted in
stiffer material parameters. Parameters of the two parameter isotropic model appears
less effected by the weighted objective function than the single objective function.

Table 4 One parameter isotropic material results from each inverse analysis. Note v was fixed
to 0.24.

Minimizing e = Minimizing e,,

E (GPa) E (GPa)
Test 1 0.279 0.283
Test 2 0.222 0.292
Test 3 0.242 0.282
Test 4 0.218 0.253

Table 5 Resulting isotropic material parameters from each inverse analysis. Note Vv is calculated
from E and G.

Minimizing e Minimizing e,
E (GPa) G (GPa) v E (GPa) G (GPa) v
Test 1 0.279 0.113 0.24 0.283 0.114 0.24
Test 2 0.160 0.054 0.48 0.170 0.057 0.48
Test 3 0.162 0.054 0.50 0.170 0.057 0.49
Test 4 0.154 0.052 0.48 0.155 0.052 0.49

The objective values from the various fits are shown in Table[6] For both objective
functions, the fourth test resulted in the smallest objective values (or the best fit).

3 The lower limit of G is E/3, and Poisson’s ratio is expressed as v = E/(2G) — 1.
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The largest objective values (or the worst fit test) depends upon which objective
function was minimized, but appears to be either the second or third test. In most
cases, the two parameter model resulted in lower objective function values than the
one parameter model.

Table 6 Resulting objective values when fitting the linear isotropic models to each bulge in-
flation test.

One parameter (E) Two parameter (E,G)

e (mm) ey e (mm) ey
Test 1 1.554 0.497 1.554 0.497
Test 2 1.881 0.795 1.699 0.725
Test 3 1.870 0.588 1.716 0.549
Test 4 1.195 0.457 1.054 0.403

3.2 Linear orthotropic material model

The simplified linear orthotropic material parameters resulting from inverse analysis
on the individual tests are shown in Table The parameters of the orthotropic model
are very different depending upon which objective function was minimized. There are
sizable changes to both E| and E; depending upon whether e or e,, was minimized.
The most interesting changes occur in the second and third test, where the choice of
objective function reversed the stiffness directions. Minimizing e resulted in E, > E1,
but minimizing e, resulted in E; > E;. Overall, minimizing e,, resulted in parameters
that were more consistent from test to test which is expected since the test material
was nominally identical. While the stiffness moduli were very different depending on
e or ey, the shear modulus was nearly the same in all conditions.

Table 7 Resulting orthotropic material parameters from minimizing tests independently with
each inverse analysis. Note that vi; was fixed to 0.24.

Minimizing e (GPa) Minimizing e, (GPa)
E, E> G E Ey Gy
Test 1 0.343 0.248 0.005 0.303 0.229 0.005
Test 2 0.212 0.241 0.004 0.306 0.230 0.005
Test 3 0.217 0.257 0.004 0.306 0.229 0.005
Test 4 0.239 0.215 0.004 0.280 0.215 0.005

The objective values resulting from each parameter set with the linear orthotropic
model are shown in Table The table shows the resulting values of e, when e
was minimized, and vice versa. The definition of the worse fit depends upon which
objective function was minimized. In all cases, the value of e, was worse when e
was minimized than when e, was minimized. A similar statement can be made
for minimizing e,. If we consider test two, the objective values when minimizing
e changed up to 15% when minimizing e, while E; changed over 40% when the
objective function was changed.

Comparisons of the differences between the two parameter isotropic material
model and the linear orthotropic material model are shown in Figures |7] through
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Table 8 Objective values when minimizing e or e, for the linear orthotropic model to each
bulge inflation test.

Minimizing e (GPa)  Minimizing e,, (GPa)

e (mm) ey e (mm) ey
Test 1 1.550 0.512 1.773 0.490
Test 2 1.660 0.765 1.917 0.710
Test 3 1.702 0.570 1.759 0.527
Test 4 1.033 0.406 1.101 0.380

The chosen displacement locations occur at the approximate maximums for the
linear orthotropic FE model, as previously shown in Figures El through @ The A,
displacements occur at [x = 56,y = 0], the A, displacements occur at [x =0,y = 63],
and the A, displacements occur at [x =0,y = 0] on the surface of the material. The
displacements were plotted with the inflation pressure. The results of the one param-
eter isotropic material model have been omitted, because they were nearly identical
to the two parameter isotropic results with the same objective function.

~#- Twolso. Obj: e -4~ Two so. Obj: e
- Two . Obj: e, o Two I5o. Obi: e
54 —— Lin. Ortho. Obj: e » in. Ortho. Obj: e

—a— Lin. Ortho. Obj: e, &' 357 —— Lin. Ortho. Obj: e.,
® Testdata o Testdata

~#- Two so. Obj: e
Two Iso. Obj: ey
—— Lin. Ortho. Obj: &

—— Lin. Ortho. Obj: e,
® Testdata

A, Displacement, mm
B, Displacement, mm

2, Displacement, mm

00 os 10 20 25 30 00 [ 10 15 20 25 30 00 os 10 1s 20 25 30

1s
Pressure, bar Pressure, bar Pressure, b

(a) A, displacement (b) A, displacement (c) A; displacement

Fig. 7 Resulting displacements from the two parameter isotropic and the linear orthotropic
material models compared with test 1. The A, results shown in A) occur at [x =56,y =0]. The
A, results shown in B) occur at [x =0,y =63]. The A, results shown in C) occur at [x =0,y =0].

The linear orthotropic FE model appears to match the selected test data better
than the isotropic model in all of the cases presented in Figures [7| through Al-
though it is unclear whether the choice of e or e, as the objective function resulted
in a better fits. It appears that the linear orthotropic model with e,, as the objective
function matched the A, and A, displacements better, while the e objective function
matched the A, displacements better. There are exceptions to both of these cases,
where the reverse is seen, depending on which test is considered.

The differences between e and e, for the two parameter isotropic model were
very subtle. However, there is a more noticeable difference between e and e, for
the linear orthotropic material model. This is most evident in the maximum A,
displacement pressure curves for all tests. The non-linearity of the A, displacements
is more prevalent than the A, or A, displacements.

3.3 Cross validation material model comparison

Inverse analyses were performed to fit isotropic and orthotropic material models
to the bulge inflation tests. Additional inverse analyses were performed such that
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Fig. 8 Resulting displacements from the two parameter isotropic and the linear orthotropic
material models compared with test 2. The A, results shown in A) occur at [x =56,y =0]. The
A, results shown in B) occur at [x =0,y = 63]. The A; results shown in C) occur at [x=0,y=0].
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Fig. 9 Resulting displacements from the two parameter isotropic and the linear orthotropic
material models compared with test 3. The A, results shown in A) occur at [x =56,y =0]. The
A, results shown in B) occur at [x =0,y = 63]. The A; results shown in C) occur at [x=0,y=0].
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Fig. 10 Resulting displacements from the two parameter isotropic and the linear orthotropic
material models compared with test 4. The A, results shown in A) occur at [x =56,y =0]. The
A, results shown in B) occur at [x =0,y =63]. The A; results shown in C) occur at [x =0,y =0].

a leave-one-test-out cross validation score was computed for each material model.
The resulting discrepancy values are presented in Table [9] The orthotropic material
model had the lowest cross validation error when e, was minimized, but the two
parameter isotropic material model had the lowest cross validation error when e
was minimized. The different objective functions appear to prefer different material
models. This implies that the material model which generalizes the bulge inflation
test better depends on the definition of the discrepancy between the test data and
FE model.

The two parameter isotropic material model parameters from the full inverse
analysis and the cross validation runs are presented in Table When e was min-
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Table 9 Resulting discrepancy from the inverse analysis and leave-one-test-out cross validation.

Cross validation error Left out test values
Model e (mm) ey e[l, 2,3, 4] ey [1, 2, 3, 4]
isotropic (E) 1.995 0.590 [2.47, 2.10, 1.87, 1.54]  [0.62, 0.52, 0.59, 0.63]
isotropic (E and G) 1.833 0.554 [2.37, 1.85, 1.72, 1.40]  [0.57, 0.50, 0.56, 0.60]
orthotropic 1.856 0.533 [2.47,1.88,1.73, 1.35]  [0.49, 0.72, 0.53, 0.40]

imized, the stiffness modulus varied from 0.155 to 0.170 GPa. However, when e,
was minimized the stiffness modulus varied from 0.170 to 0.193 GPa. and the shear
modulus varied from 0.057 to 0.070 GPa. Overall, e, resulted in more consistent and
stiffer moduli.

Table 10 Resulting two parameter isotropic material parameters from each inverse analysis.

Minimizing e (GPa)  Minimizing e,, (GPa)

E G E G
Leaving test 1 out  0.155 0.052 0.170 0.057
Leaving test 2 out  0.167 0.056 0.170 0.057
Leaving test 3 out  0.164 0.055 0.170 0.056
Leaving test 4 out  0.170 0.057 0.193 0.066

The orthotropic material parameters from the cross validation study are shown
in Table There is a significant difference between the parameter variance depend-
ing upon which objective function was used. For instance, E; varied from 0.224 to
0.280 GPa when e was minimized. However, when e,, was minimized E; varied from
0.303 to 0.305 GPa. A similar trend occurs for E; and Gj, where minimizing e,
resulted in more consistent parameters.

Table 11 Resulting orthotropic material parameters from each inverse analysis.

Minimizing e (GPa) Minimizing e,, (GPa)

E E, G E Ey G
Leaving test 1 out 0.224 0.235 0.003 0.303 0.229  0.005
Leaving test 2 out  0.297 0.231 0.004 0.304 0.229 0.005
Leaving test 3 out 0.284 0.224 0.004 0.304 0.229 0.005
Leaving test 4 out 0.280 0.244 0.003 0.305 0.229 0.005

4 Discussion

The most striking result was the effect of the two objective functions on selecting
parameters for the linear orthotropic material model. When e was minimized the
linear orthotropic parameters varied significantly from test to test, with some tests
resulting in E; > E; and others E; > E,. This was not the case when e,, was mini-
mized, in which the parameters from test to test were fairly consistent with E; > Ej.
The difference between the two objective functions was that e considered the dis-
crepancies in the x,y and z directions to be of equal weight, while e,, considered the
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z discrepancies to be one tenth the weight. This weighting factor corresponds to an
imbalance between the test maximum z displacement being about ten times larger
than the maximum x or y displacements. It’s important to clarify that both e and
e,, would approach zero if it was possible for a perfect fit, however resulting material
parameters occur with the inability to perfectly fit the data. In these circumstances
it appears that one may need to careful consider how to eventuate the discrepancy
of the displacement field, especially under similar imbalanced displacement data.

Tests two and three are of particular interest with the linear orthotropic model,
because these tests resulted in E> > E; when e was minimized. It could be reasonable
to assume that the test directions were incorrect by a factor of 90°, and that this
mistake in the x and y directions resulted in the set of parameters. Additional inverse
analyses were performed on these tests, where the test data was rotated by factors
of 45° and 90°. What is interesting is that when e was minimized the resulting
parameters resulted in E; > Ej regardless of the rotation, and there was little change
to the parameters. However, when e,, was minimized both E; and E; would change
significantly based on the rotation. This hints that giving more weight to the x and
y displacements, like in e,,, would be better if an inverse analyses was required to
identify orthotropic parameters without knowing the primary and secondary material
directions.

The different objective functions had an interesting effect on using leave-one-
test-out cross validation for material model selection. When e was minimized, the
cross validation error favored the two parameter isotropic material model. Though
when e,, was minimized, the cross validation error favored the orthotropic material
model by a much larger margin. This reemphasizes the importance of selecting an
appropriate objective function, as the choice of objective function not only effects
the resulting parameters, but also effects the perceived generalization error of the
model.

5 Conclusion

An inverse analysis was described to find material parameters by matching the full
displacement field from bulge inflation tests. Optimization was used to find material
parameters in a FE model that best matched the experimental displacement field
from tests on PVC-coated polyester. Material parameters were determined for a lin-
ear isotropic and simplified linear orthotropic material models. Two different objec-
tive functions were considered to describe the discrepancy between the experimental
data and numerical model. The first objective function considered equal weight be-
tween the displacement components, while the other function gave more weight to
the x and y displacements. The weighting scheme was chosen to compensate for the
fact that the majority of the deflections within the bulge inflation test occur out-of-
plane. Resulting material parameters for the linear orthotropic material model were
very different depending on which objective function was minimized. Thus the choice
of objective function being considered is very important when performing such an
optimization on the full field data.

Cross validation was performed to determine whether the isotropic or orthotropic
material model was a better representation of the material behavior. There was little
difference in the cross validation error according to the equally weighted objective
function, however the weighted objective function heavily favored the orthotropic
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material model. This indicates that the choice of objective function was not only
important in material parameter selection, but can also impact material model se-
lection.
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