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Abstract A methodology is presented to fit material parameters in finite element
(FE) models using full displacement field data. Four bulge inflation tests were per-
formed on a PVC-coated polyester material. Digital image correlation (DIC) was
used to capture the full displacement field of the material. An inverse analysis was
set up to find material parameters in a FE model which best matched the full dis-
placement field of the experimental test. Three different objective functions were
considered to quantify the discrepancy between the FE model and experiments. The
first function only matched the maximum out-of-plane deflection, representative of
an experiment with a single point deflection measure. The other functions consider
matching the numerical model to the full three dimensional displacement field, where
one function considers a weighted scheme to balance the order of magnitude differ-
ence between in-plane and out-of-plane displacements. The resulting material param-
eters were heavily dependent upon which objective function was chosen. The best
parameters are thought to come from the weighted objective function considering
the full-field data, which matched the in-plane displacements better than the other
objective functions.

Keywords Inverse analysis · Objective functions · material parameter identification ·
bulge inflation test

1 Introduction

The finite element (FE) method is an important tool used to design membrane
structures. These FE models rely on the efficacy of material models for design insight,
and unfortunately selecting appropriate material parameters to represent complex
behavior can be difficult. This is especially true for materials like coated fabrics,
which typically consist of a vinyl polymer coating over woven yarns bundled from
several fibers. Inverse analyses, or iterative schemes for FE model updating (FEMU)
have been used to find material parameters from complex load cases. In this paper,
three different objective functions were investigated with FEMU to estimate material
parameters from bulge inflation tests on PVC-coated polyester. Objective function
refers to how the discrepancy between the FE model and test data is quantified, and
material parameters are typically selected to minimize this function. The objective
function has an important effect on the material parameters selected using this type
of inverse analysis (Zhan et al., 2011; Jekel et al., 2019; Tam, 2020).

PVC-coated polyester is a coated textile. It’s most commonly modeled as a con-
tinuous, homogeneous, orthotropic material (Shaw et al., 2010), which can have large
material direction dependent strength due to the warp-to-fill stiffness ratio (Dinh
et al., 2017). The typical weave has the warp yarns pulled taut, while the fill yarns
are woven in-between the warp yarns. The fill yarns run orthogonal to the warp
yarns. Various non-linear models have been used in an attempt to better describe
the behavior of the material. Galliot and Luchsinger (2009) proposed a non-linear
material model based on the load ratio between the material warp and fill direc-
tions. Ambroziak and Kłosowski (2014) used a piecewise linear orthotropic model,
and Jekel et al. (2017) used polynomials to describe the non-linear elastic behavior
of the material.

Biaxial tests are commonly used to characterize material parameters for struc-
tural membrane materials (Stranghöner et al., 2016). Several studies have used bulge



3

(or bubble, or membrane) inflation tests to induce an equal biaxial load on the
material. These bulge tests typically involve inducing a pressure on one side of a
circularly clamped membrane material. Reuge et al. (2001) performed these bulge
inflation tests on a rubber material and outlined the assumptions that lead to an
equal biaxial load occurring at the apex of the deflected membrane material. Sasso
et al. (2008) provides a good review of how bulge inflation tests compare to other
forms of tension tests. Much of these early bulge inflation tests only recorded the
apex height (Rachik et al., 2001; Charalambides et al., 2002). More recent bulge
inflation tests have adopted the use of 3D digital image correlation to measure the
entire surface deformation of the membrane material (Machado et al., 2012). Tonge
et al. (2013a) stated that the full displacement field allows for the determination
of in-plane material directions and was later used to calibrate a material model for
human skin.

It is often the case that FEMU is used to calibrate material parameters by formu-
lating and inverse problem to match a numerical model to some physical experiment
(Lovato et al., 1993; Cailletaud and Pilvin, 1994; Drass and Schneider, 2016). The
process can be generalized by using optimization to find parameters in a FE model
which minimize the discrepancy between the model and experimental data (Asaadi
et al., 2017). In a forward problem, parameters can be directly inferred from an
experimental test. While an inverse problem iteratively updates the FE model to
find parameters that best match an experimental response (Lee et al., 2019). This
process is often referred to as model calibration. The FE model must be accurate
enough to get reasonable parameters when using FEMU. Oversimplified assumptions
or incorrect boundary conditions may result in non-sensible parameters. As such, a
validation step is necessary to ensure the parameters calibrated with FEMU are
sensible before being used in other practical tasks. We refer the reader to strategies
by Oh et al. (2016) and Son et al. (2020) to statistically improve the accuracy of
FE models to both blind and known uncertainties. Additionally, there may be some
cases where unknown boundary conditions may be included into the optimization
formulation of the material calibration problem as performed by van Rensburg et al.
(2018).

Model calibration can be performed using deterministic or probabilistic meth-
ods (Lee et al., 2019). A deterministic model calibration does not include the mea-
surement uncertainty, while probabilistic method can account for both model and
experimental uncertainty. Jung et al. (2016) stated that models calibrated determin-
isticly do not account for material uncertainty, and thus may result in unreliable
solutions. The uncertainty of the experiments needs to be quantified in order to cal-
ibrate material models probabilistically. Unfortunately, DIC displacement field data
is typically treated as a black box where uncertainties are not well understood. The
bulge inflation test is particularly challenging having out-of-plane displacements on
the curved material surface. While it may be more reliable to calibrate the mate-
rial model parameters using a probabilistic method, this work uses a deterministic
method because the uncertainty due to DIC errors of the displacement measurements
is currently unknown. However, the experimental measurements are made available,
so that a probabilistic calibration can be performed in the future.

There are many different choices of possible objective functions to calibrate ma-
terial models. Zhan et al. (2011) proposed the EARTH method to calibrate model
parameters into phase, magnitude, and slope errors from time history data. A sin-
gle DIC bulge inflation test may generate over a hundred thousand unique time
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histories. In order to apply EARTH, each of these time histories would need to be
broken into their respective errors and treated as separate objective functions in a
multi-objective optimization. This process to compute the objective functions may
be computationally expensive with full-field data.

The previous studies (Rachik et al., 2001; Charalambides et al., 2002) used
only the height to determine material parameters from bulge inflation tests. Tonge
et al. (2013b) only used a single stress resultant as the cost function for calibration.
Machado et al. (2012) used curvatures to determine a stress tensor from bulge infla-
tion tests to infer material parameters for an elastic material. While these previous
methods work well for a planar isotropic material, they are difficult to extend to a
directional dependent woven textile like PVC-coated polyester. Additionally, it is un-
clear how important normalization will be to the objective function when calibrating
to multiple displacement components. This work will calibrate a linear orthotropic
material model from bulge inflation tests. Calibrating material parameters using the
bugle height (displacement at maximum deflection) will be compared to not only the
full displacement field, but also with weighted (or normalized) displacements.

Jekel et al. (2016) showed that it was possible to use the displacement field of
a bulge test to select parameters for a non-linear orthotropic material model using
simulated experimental data. Jekel (2016) then used this process on polynomial
displacement fields fitted to experimental data at selected inflation pressures. These
polynomial surfaces introduce an extra layer of error in the material parameters,
as the error in the polynomial fit was not properly accounted for. While previous
work used a surrogate model to represent the experimental data, this work will
find material parameters by fitting the full experimental displacement field directly.
A new approach is described which allows for any data point in the experimental
displacement field be compared to a FE model, for any initial surface location and
inflation pressure.

Jekel et al. (2016) considered the discrepancy in the x,y and z displacements
fields. When only the z displacements were utilized, there appeared to be multi-
ple equivalent displacement solutions for a given material parameter set, possibility
hinting that the FEMU problem was undetermined. However, with the inclusion of
x and y displacements, there appeared to be a unique set of material parameters
to represent the entire displacement field. While the previous work only considered
numerical results, this work now considers experimental data. The experiments show
that the out-of-plane deformations were an order of magnitudes larger than the in-
plane displacements, which we believe this weighting may play an important role
when calibrating parameters to real experimental data.

This paper is organized into five sections: 1) Introduction, 2) Methods, 3) Re-
sults, 4) Discussion, and 5) Conclusion. The Methods section details the process
used to obtain material parameters from the bulge inflation tests. Subsections are
used within the method section to draw attention to experimental test setup, FE
model, mathematical discrepancy between the experiment and FE model (objective
function), and optimization procedure. The results section is split into three parts
to separate the isotropic material parameters, orthotropic material parameters, and
the cross validation study. The discussion goes on to focus on the orthotropic results,
and conclusions are presented.
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2 Methods

This section describes the FEMU method utilized in this research to understand
how the objective function affects resulting material parameters. The bulge infla-
tion tests were performed using DIC on PVC-coated polyester.1 This experiment
outputs full-field displacement data (∆x,∆y, and ∆z) from a flat circular piece of
membrane material. A FE model was created replicating the boundary conditions
of the bulge inflation tests. Three different objective functions are described. Each
objective function represents a different method to quantify the difference between
the experimental data and FE model. One quantity considers only the height of
the bulge experiment, the other considers the full-displacement field, and the last
considers a weighted variant of the full-displacement field. Then the optimization
process to perform the inverse analysis is briefly described, which results in linear
orthotropic material parameters.

2.1 Experimental tests

The bulge inflation tests involve clamping a sample of membrane material into a
circular clamp. Pressure is then induced on one side of the material. The material
deflections were recorded using DIC. The DIC system used was the StrainMaster
with DaVis (LaVision GmbH, 2014), which was capable of syncing the inflation
pressure with the recorded images. A visual representation of a bulge inflation test
is provided in Figure 1.

Four bulge inflation tests were performed at Stellenbosch University in South
Africa. Details of the process and test fixture are found in section 5.1 of (Jekel, 2016).
The diameter of the circular bulge test was 200 mm. The PVC-coated polyester tested
was Mehler Texnologies VALMEX® 7318 (the same material tested in(Jekel et al.,
2017)). Four samples of material were cut from the same roll, with each sample being
a 250 mm square. Spray paint was added to the surface of each specimen, with a
random pattern, to increase the surface contrast of the material for DIC processing.
Each test was inflated from zero to three bar, by manually opening a compressed air
valve to the bulge inflation test fixture. This resulted in each test being inflated at
a unique load rate as seen in Figure 2. The internal pressure was recorded with a
Festo SPTE-P10R-S4-V-2.5K pressure transmitter.

Full-field bulge inflation tests generated a large amount of data as shown in
Table 1. The xy-plane was oriented with the surface of the material prior to inflation,
with the x direction occurring in the warp material direction, while the y direction
occurred in the fill material direction. The material was inflated in the z direction.
Here the largest test generated nearly two million data points, while the smallest
test generated only two hundred thousand data points. Each data point represents
a unique combination of inflation pressure p and initial x,y location. There are three
deformations recorded for each data point, represented as separate ∆x,∆y, and ∆z
values.

The post-processing parameters relating to the DIC technique were changed from
test to test which resulted in a different number of data points being captured on

1 An online repository is available at https://github.com/cjekel/inv_bubble_opt which
includes the source code to perform the inverse analysis, test data, and procedures to reproduce
this work.

https://github.com/cjekel/inv_bubble_opt
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Fig. 1 Bulge inflation test overview.

Table 1 Number of unique (x,y, p) data points from each test and inflation pressures.

Test # of data points
1 1,836,961
2 729,718
3 1,201,509
4 289,312

the material specimen from test to test. The post-processing parameters include a
window size, which is used to match the correlation between subsequent images.
The size of the window directly influences the number of data points that occur on
the material specimen. This window size needed to be changed from test to test
because of variation in the random speckle pattern on the material. In an industrial
application this variation can be controlled through the use of tools (e.g. multiple
paint stencils) to produce a consistent pattern from test to test. A more consistent
speckle pattern would allow for the same post-processing parameters, and a more
consistent number of data points on the surface of the material specimen.

The DIC techniques were not perfect, as there are missing data points in some
of the tests which is a common phenomenon with these techniques. This happens
when correlations are lost between images, and becomes more evident with larger
deflections. The tested PVC-coated polyester had a glossy finish, which would cause
reflections to move on the surface of the material as the material deformed out-of-
plane. These moving reflections would cause the DIC technique to lose correlation of
patterns with subsequent images, resulting in ”holes” on the post-processed images.
Additionally, the severity of missing data varies from test to test. Figure 3 shows
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Fig. 2 Pressure time curves from each bulge inflation test.

each x,y data point at the last inflation pressure of each test, where each colored
pixel is a DIC data point. While Tests 1 and 2 have the highest density of data
points, Test 1 doesn’t have any missing data points while Test 2 has several small
holes on the surface of the material. The worst of the missing data occurs with Test
3, which has large holes on one quarter of the test. Test 4 only has two small holes
on the surface of the data, and also has the least number of x,y data points on the
surface of the material.

For a recorded pressure, the experimental test data includes a matrix of values,
where each column represents either the initial position (x, y, z), or the deformation
in each direction (∆x,∆y, ∆z). A single row of this matrix represents a single point
in three dimensional space on the surface of the material. The kth point was initially
at xk, yk, and zk prior to inflation. Then for a given pressure, the point is physically
located at xk +∆xk, yk +∆yk, and zk +∆zk in the three-dimensional space. Videos for
each test are included as supplementary material to help visualize the experimental
data. There is a video for each test showing the ∆x,∆y, or ∆z deflections of the
material. There is also a video showing the three-dimensional shape of the material
([xk +∆xk,yk +∆yk,zk +∆zk]). Take note that the videos are not in a real physical
scale. The videos show the raw data points captured from the experimental test,
where each data point is used in the calibration process of the material.
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(a) Test 1 (b) Test 2

(c) Test 3 (d) Test 4

Fig. 3 Plots of the x,y data points of each bulge inflation test. The darker color is related to
having a higher density of data points.

2.2 Finite Element model

An implicit non-linear FE model was constructed in ABAQUS replicating the bound-
ary conditions of the bulge inflation test. The material is modeled as a membrane
material. Clamped boundary conditions are applied to the edge of the material. A
surface pressure is applied as a function of time to inflate the membrane material.
A non-linear model is needed to describe the geometric non-linearity as Sheplak and
Dugundji (1998) demonstrated, with large deflections the center load displacement
curve quickly transitions from linear to non-linear as the mid-plane force quickly
grows with respect to geometry.

The FE model uses an implicit solver, with 201 load steps between zero and three
bar. Each load step uses adaptive time stepping. The adaptive time stepping allows
the model to solve a single load-case in one step, or cut back to smaller increments
if needed. Over 900 linear Q4 membrane elements are used to represent the surface
of the material. The displacement field at the nodes are exported to be compared to
the experimental tests for a candidate set of material parameters.

The displacement field of the FE model needs to be available at various pressures
of the current experimental data and potential future data. Either load steps can
be added to the FE model at the exact experimental pressures, or the displacement
field of the FE model can be interpolated at the observed experimental pressures.
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Interpolation was chosen since it didn’t involve manually editing the input deck
for each experiment. Specifically linear interpolation was used to evaluate the FE
model’s displacement at the nodes for the exact pressures of the experimental test.
The displacement of the FE model can be expressed as ∆(x,y, p). The experimen-
tal data records the displacements at the initial position x,y and pressure p. Linear
interpolation is used to solve the displacement field ∆(x,y, p) at the exact experimen-
tal pressure p by interpolating the nodal FE solution at the two nearest computed
pressures as

∆(x,y, p)−∆(x,y, p1)

p− p1
=

∆(x,y, p2)−∆(x,y, p1)

p2 − p1
(1)

where p2 and p1 represent the nearest pressures of the FE model’s load steps. The
advantages of this interpolation scheme is that both the FE deck and post-processing
routines do not need to be altered in order to obtain displacements of the model for
any obscure pressure from future experiments.

Overall, the linear interpolation scheme proved very accurate when interpolating
between the FE model load steps. The linear interpolation accuracy was compared
to FE models with load steps halfway in-between the previous 201 load steps (rep-
resenting the worse possible interpolation case). The linear interpolation error was
negligible, with the interpolation error following on the order of single precision
(10−8 mm) numerical noise. This level of noise was the same level of precision used
by the FE model. The maximum possible error from this interpolation scheme has
a hard bound as defined by Conte and Boor (1980). For any given p2 and p1, the
maximum error from interpolation in deflection is bounded by

|E|max =
(p2 − p1)

2

8
max

(∣∣∂ 2∆

∂ p2

∣∣). (2)

Linear isotropic and orthotropic material models were investigated. An isotropic
model with one unknown parameter (stiffness modulus E), and an isotropic model
with two unknown parameters (stiffness modulus E and the shear modulus G) were
considered. The orthotropic model was simplified as a three parameter model, with
parameters for the stiffness moduli (E1 & E2), and the shear modulus (G12). The one
parameter isotropic model and the orthotropic model use a Poisson’s ratio of 0.24 as
measured in (Jekel et al., 2017). We believe that our experimental setup would require
through thickness measurements in order to accurately characterize the Poisson’s
ratio. There are additional compelexities While previous work of Jekel et al. (2017)
used non-linear material models to characterize the PCV-coated polyester, this work
used linear material models which seemed sufficient to match the load-displacement
response observed in the bulge experiments.

The displacement field of the FE model for an orthotropic material model at
2.0 bar is shown in Figures 4 through 6. The maximum ∆z value is about ten times
larger than the ∆x or ∆y values. Radial Basis Functions (RBF) are used to interpo-
late the displacements from the initial (x,y) node locations of the FE model to be
evaluated at the experimental locations (Broomhead and Lowe, 1988). The RBFs are
exact at the node locations, and result in a smooth displacement field from the linear
four node FE elements. The InterpolateSimpleRBF object construct these RBFs to
the full displacement field of the FE analysis. The RBFs were inspired by the SciPy
rbf function (Virtanen et al., 2020).



10

100 75 50 25 0 25 50 75 100
x (mm)

100

75

50

25

0

25

50

75

100

y 
(m

m
)

0
4
8
12
16
20
24
28
32

z (
m

m
)

Fig. 4 Displacement ∆z of FE model at 2.0 bar with orthotropic properties E1 = 0.8 GPa,
E2 = 0.15 GPa, G12 = 0.025 GPa, and ν12 = 0.24.

2.3 Objective functions

The objective function is the mathematical quantity of interest which quantifies the
discrepancy between the physical bulge inflation tests and the FE model. An opti-
mization procedure minimizes the objective function to find the best set of material
parameters. A simple objective function can be constructed which only minimizes
the difference in ∆z displacement at the (x = 0,y = 0) center of the membrane as

ez(β) =
np

∑
i=1

|∆z(pi)t −∆z(pi,β) f | (3)

where np is the number of inflation pressures for from a given test. This is a L1 norm
between the experimental heights and observed heights.

Quantifying the difference between the full-field experimental data is more com-
plicated than only considering a single point. Let the average absolute deviation be-
tween the x displacement of the FE model and inflation test be denoted by r∆x( j,β)
for the j test and β set of material parameters. The L1 deviations for the displace-
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Fig. 5 Displacement ∆x of FE model at 2.0 bar with orthotropic properties E1 = 0.8 GPa,
E2 = 0.15 GPa, G12 = 0.025 GPa, and ν12 = 0.24. Note the symmetry about x = 0.

ment components are expressed as

r∆x( j,β) =
1
n j

n j

∑
i=1

|∆x(xi,yi, pi)t −∆x(xi,yi, pi,β) f | (4)

r∆y( j,β) =
1
n j

n j

∑
i=1

|∆y(xi,yi, pi)t −∆y(xi,yi, pi,β) f | (5)

r∆z( j,β) =
1
n j

n j

∑
i=1

|∆z(xi,yi, pi)t −∆z(xi,yi, pi,β) f | (6)

where n j is the total number of data points in the j test. A simple discrepancy is
then formulated as the cumulation of the L1 discrepancies in mm as

e(β) =
1
nt

nt

∑
j

r∆x( j,β)+ r∆y( j,β)+ r∆z( j,β) (7)

where nt is the total number of tests. The subscripts t is for the physical inflation
test data, while the subscript f is from the FE model.

The formulation of e considers the discrepancy in the ∆x, ∆y, and ∆z displace-
ments to be of equal weight. This formulation could be problematic if the discrep-
ancy in one displacement components dominates the others. In the bulge inflation
test data, the ∆z component was roughly ten times larger than the in-plane (x or
y) components. This creates the potential for the r∆z discrepancies to be larger than
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Fig. 6 Displacement ∆y of FE model at 2.0 bar with orthotropic properties E1 = 0.8 GPa,
E2 = 0.15 GPa, G12 = 0.025 GPa, and ν12 = 0.24. Note the symmetry about y = 0.

the other two directions, because the ∆z values have the potential to be at least ten
times larger than ∆x or ∆y.

A second objective function is proposed as ew to deal with the imbalance between
the maximum in-plane and out-of-plane displacements. The function is just a slight
modification of e, and is expressed as

ew(β) =
1
nt

nt

∑
j

r∆x( j,β)+ r∆y( j,β)+wr∆z( j,β) (8)

where w is a weighting component2. While there can be many ways to select w, a
simple scheme was chosen as

wz =
1
nt

nt

∑
j

max
(
∆x( j)

)
+max

(
∆y( j)

)
2max

(
∆z( j)

) (9)

which represents the ratio of the average x and y displacement to the maximum z
displacement. This resulted in w = 0.1 for the bulge inflation tests under consider-
ation. This equation to weight displacement components differently is similar to a
relative error formulation used by Yun et al. (2018), and also similar to normalization
schemes used in multi-objective optimizations as described by Tam (2020).

The optimization requires the objective function to be computed multiple times
in the FEMU procedure. There are many steps required to automate this using

2 The software available online allows a weight to be specified for each directional component
of the displacement field.
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software which is described in Table 2. Several Python functions were created to
interface with the the ABAQUS solver and post processor for this application. The
function essentially returns the objective from an inputted candidate set of material
parameters.

Table 2 Process to compute the objective function for given material parameters.

Step Description
1 Write the material model parameters to the ABAQUS input file
2 Run ABAQUS solver on the input file
3 Run ABAQUS post processor to export displacement field of FE model
4 Load the FE displacement field into memory
5 Compute the discrepancy between FE model and DIC data:

i) Linearly interpolate the FE model to match the pressures of the bulge test data
ii) Construct and evaluate RBFs to the FE model displacement field
iii) Compute either ez or r∆x, r∆y, and r∆z for each set of test data

6 Compute the final objective function of e or ew

2.4 Optimization

The inverse analysis is the process of finding the material parameters of the FE model
to match the bulge inflation test data. The optimization problem can be stated as

minimize: e(β) (10)
subject to: βl ≤ βk ≤ βu, k = 1,2, · · · ,np. (11)

where β is the vector of material parameters which are restricted to some reasonable
lower and upper bounds, and e(β) represents some objective function describing the
discrepancy between experiment and numerical model. Bounds will depend upon the
material model, and in this case were selected to occur just beyond the observed range
in Jekel et al. (2017). In cases where there is no previous literature on the material
or material model, bounds can be selected based on the feasible domain of the FE
model. For this FE model, there is some lower bound to the stiffness parameter which
will cause the FE model not to converge, however such upper bound does not exists.
The isotropic parameters are expressed as β = (E) or β = (E,G), and the simplified
orthotropic parameters are expressed as β = (E1,E2,G12).

A multi-start optimization strategy was utilized in order to avoid the presence
of multiple local minima. A variant of the BFGS (Broyden, 1970; Fletcher, 1970;
Goldfarb, 1970; Shanno, 1970) gradient based optimization was used as the local
optimizer (Virtanen et al., 2020; Byrd et al., 1995). The multi-start process ran
five BFGS optimizations from different random starting points in the design space
(Schutte et al., 2006). Each of the five BFGS runs were limited to either 200 function
evaluations, or satisfying the convergence criteria. The convergence considered either
relative changes in the objective function, absolute changes in the objective function,
or gradient magnitude.

There is the possibility that some combination of material parameters may cause
the FE analysis to not converge. As an exaggerated example, consider the case when
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stiffness moduli approach zero. In such a case the deformation becomes too large that
finite elements become poorly shaped and unable to converge. There were observed
instances in our optimizations when the optimizer would try a material parameter
combination that the FEM would fail to reach final convergence. The boundary of
the feasible set of parameters that does not run into this type of FE issues is not
known a priori. To deal with this problem, the maximum objective value from the
run-time history was passed to the optimization algorithm when the FE analysis
failed to converge.

While there were a number of potential issues using gradient based optimization
with this application, in practice the gradient optimization was able to produce
objective functions lower than an initial random guess. Looking at the optimization
history, the FE analysis would only fail to converge during the line search stage
of the gradient based optimization algorithm, and not the finite differences which
was used to approximate gradients. Lastly, there were no observed issues with the
optimization caused by the L1 objective function, noting that the gradients won’t
exist if a zero objective value occurs.

3 Results

Inverse analyses were performed on the bulge inflation tests to find material param-
eters for the linear orthotropic model. The focus of the results is to demonstrate
the effect of minimizing three different objective functions. These objective func-
tions are summarized as the sum of full-field displacement residuals (e), the sum
of weighted displacement full-field residuals (ew), and the bulge height residual (ez)
which considered only a single point.

The simplified linear orthotropic material parameters resulting from inverse anal-
ysis on the individual tests are shown in Table 3. There are different material param-
eters depending upon which objective function was minimized. The most noticeable
parameter differences can be seen in the primary E1 and secondary E2 stiffness mod-
uli. The most interesting changes occur in the second and third test, where the
choice of objective function reversed the stiffness directions. Minimizing e or ez re-
sulted in E2 > E1, but minimizing ew resulted in E1 > E2. Overall, minimizing ew
resulted in parameters that were more consistent from test to test as evident by
having the lowest range for the set of tests. As a reminder each test was conducted
on a nominally identical material specimen, and it was expected that there would be
minimum parameter differences from test to test. While E1 and E2 stiffness moduli
were very different depending on e or ew, the shear modulus was nearly the same in
all conditions.

The objective values resulting from each parameter set with the linear orthotropic
model are shown in Table 4. The table shows the resulting values of ew and ez
when e was minimized, and vice versa. The definition of the worst fit depends upon
which objective function was minimized. It is important to point out that for each
test, the minimum value of each objective only occurred when that objective was
minimized. If this was not the case, it would indicate that an optimization had failed
because a better optimum existed. The other important aspect of this table is that
it demonstrates that objective functions are fundamentally different. In other words,
finding the best ez does not yield the best e or ew, and vice versa.
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Table 3 Resulting orthotropic material parameters from minimizing tests independently with
each inverse analysis. Note that ν12 was fixed to 0.24.

Minimizing e (GPa) Minimizing ew (GPa) Minimizing ez (GPa)
E1 E2 G12 E1 E2 G12 E1 E2 G12

Test 1 0.343 0.248 0.005 0.303 0.229 0.005 0.343 0.246 0.005
Test 2 0.212 0.241 0.004 0.306 0.230 0.005 0.213 0.219 0.003
Test 3 0.217 0.257 0.004 0.306 0.229 0.005 0.206 0.209 0.003
Test 4 0.239 0.215 0.004 0.280 0.215 0.005 0.210 0.214 0.003
Mean 0.252 0.240 0.004 0.299 0.226 0.005 0.243 0.222 0.003
Range 0.131 0.042 0.001 0.026 0.015 0.000 0.137 0.037 0.002

Table 4 Objective values when minimizing e, ew, or ez for each bulge inflation test.

Minimizing e (GPa) Minimizing ew (GPa) Minimizing ez (GPa)
e ew ez e ew ez e ew ez

Test 1 1.55 0.51 1.75 1.77 0.49 2.81 1.55 0.51 1.75
Test 2 1.66 0.77 1.03 1.92 0.71 2.25 1.78 0.83 0.86
Test 3 1.70 0.57 2.04 1.76 0.53 2.71 2.19 0.74 0.71
Test 4 1.03 0.41 0.82 1.10 0.38 1.27 1.11 0.45 0.76

The objective values were compared with a zero displacing FE model to draw
comparison at a poor design point. This can be thought of as an much stiffer ma-
terial model (i.e. two orders of magnitude larger), and represents the worst possible
calibration for each test. Additionally, this could be used as the starting point for
an optimization algorithm, because it should always be possible to select a material
model that does not displace. The objective values are shown in Table 5, and can be
seen to be approximately four times worse than the best optimized objective values.
The different objective functions do not agree to which test has the best fit to the
zero displacement model. The third test has the lowest e and ez values, while the
second test has the lowest ew value. Again, this demonstrates that objective functions
are fundamentally different.

Table 5 Objective values for a zero displacement numerical model (infinitely stiff material).

e ew ez
Test 1 5.62 2.03 3.99
Test 2 5.59 1.53 4.51
Test 3 4.50 1.67 3.14
Test 4 5.75 1.74 4.76

Comparisons between the FE models and the test data are shown in Figure 7.
The figures show slices along the lines y = 0 and x = 0 at a selected inflation pressure.
The mean squared error (mse) is shown in each figure, which can be used to quantify
which result best matches the experimental data. The results from other inflation
pressures are qualitatively similar to the differences in objective functions shown
here. Additionally, figures from all inflation pressures as well as inflation videos are
included in the supplementary material. In general the FE models had a tendency
to overestimate the deflection at low pressures, but underestimate the deflection at
high pressures.

It appears that the objective function ez matches the apex of the bulge test better
than e or ew. The apex is where the largest ∆z deflection occurs, and it appears that
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e is much better at matching the apex than ew. While ew does a poor job matching
the deflections at the apex, it potentially does a better job of matching the profile
(or shape) of the bulge inflation test along the outer edges of the test (|x| ≥ 50 and
|y| ≥ 50). It can be noted that the results from e and ez are more similar, while the
results from ew appears to be the most different.
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Fig. 7 Profiles through the lines y = 0 and x = 0 comparing the results using each objective
function for the four tests.

The previous figures highlighted the ∆z displacements. This is the most intuitive
displacement component, as ∆z resembles the shape one sees while performing this
test. However, ∆z is only one-third of the displacement components. Profiles of ∆x
and ∆y are shown in Figure 8. The ∆x displacement was plotted along the line
y = 0, and the ∆y displacement along the line x = 0. These profiles cut through
the interesting behavior of the maximum in-plane deformations, which somewhat
resemble a sinusoidal wave. Again a lower mse means the result is a better match
to the experimental data. The same inflation pressures form the previous figures are
highlighted.

It should not be a surprise to report that the ew objective function matches the
∆x and ∆y displacements better than the other objective functions. Essentially ew
puts more importance on matching the in-plane displacement components correctly,
and as a result the peaks of the ∆x and ∆y displacement are better represented with
ew. While the results for ez and e are similar, a slight edge can be given to e as it
appears to matches the ∆x and ∆y slightly better than ez through the shown inflation
pressures.
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Fig. 8 Profiles of ∆x and ∆y through the lines y = 0 and x = 0 comparing the results using each
objective function.

4 Discussion

The results characterized the E1, E2, and G12 stiffness moduli from a bulge inflation
test. Fundamentally these material components all lie in the material plane, however
the bulge test is likely to produce larger out-of-plane than in-plane displacements.
The different objective functions compare three cases: i) only matching the maximum
out-of-plane displacement (ez), ii) all displacement components equally (e), and iii)
a weighted balance between in-plane and out of plane components (ew).

The most striking result was the effect of the objective functions on selecting
parameters for the linear orthotropic material model. When e or ez was minimized
the linear orthotropic parameters varied significantly from test to test, with some
tests resulting in E2 > E1 and others E1 > E2. This was not the case when ew was
minimized, in which the parameters from test to test were consistent with E1 > E2.
We know that E1 > E2 given our understanding of the material’s construction and
manufacturer’s statements. Additionally, the results from ew better match quasi-
static uniaxial tests for E2 performed by Jekel et al. (2017). These tests show that
E1 ≈ 0.3 and E2 ≈ 0.2 at 0.1 strain, which agree well with the ew results presented
here.

It’s important to clarify that ez, e, and ew would all approach zero if it was pos-
sible for a perfect fit to the experimental data. Given that the model was incapable
of a perfect fit, we obtained different material model parameters depending upon
objective function which each quantify the best fit differently. This demonstrates the
importance of full-field data over single point data for a complicated load-case, as
characterizing only the maximum deflection point was unable to accurately charac-
terize the E1 and E2 moduli. This work also demonstrates that work with full 3D
field data may need to take special consideration of objective functions. Despite e
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considering the full-field data, it resulted in nearly the same parameters as ez which
only consider a single point, because of the dominance of the ∆z displacements.

Test 2 and Test 3 are of particular interest with the linear orthotropic model,
because these tests resulted in E2 > E1 when e was minimized. It could be reasonable
to assume that the test directions were incorrect by a factor of 90◦, and that this
mistake in the x and y directions resulted in the set of parameters. Additional inverse
analyses were performed on these tests, where the test data was rotated by factors
of 45◦ and 90◦. What is interesting is that when e was minimized the resulting
parameters resulted in E2 > E1 regardless of the rotation, and there was little change
to the parameters. However, when ew was minimized both E2 and E1 would change
significantly based on the rotation. This hints that giving more weight to the x and
y displacements, like in ew, would be better if an inverse analyses was required to
identify orthotropic parameters without knowing the primary and secondary material
directions.

The linear orthotropic material in the FE model appears to be provide a reason-
able representation of the test data. One of the benefits of the formulation of the
e objective function is that it’s value is an easily interpretable physical length (as
opposed to an L2 norm). Here the largest value of e seen in table 4 was about 2 mm,
so the average deviation between of all models and experiments was a Manhattan
distance less than 2 mm.

5 Conclusion

An inverse analysis was described to find material parameters by matching the full
displacement field from bulge inflation tests. Optimization was used to find ma-
terial parameters in a FE model that best matched the experimental displacement
field from tests on PVC-coated polyester. Material parameters were determined for a
simplified linear orthotropic material model. Three different objective functions were
considered to describe the discrepancy between the experimental data and numerical
model. One objective function considered only a single point, another considered the
full 3D displacement field, and the last objective function considered a weighted resid-
ual of the full displacement field. The weighting scheme was chosen to compensate
for the fact that the majority of the deflections within the bulge inflation test occur
out-of-plane, and thus weighted the out-of-plane deflections equal to the in-plane
deflections. Resulting material parameters for the linear orthotropic material model
were very different depending on which objective function was minimized. Thus the
choice of objective function being considered is very important when performing such
an optimization on the full-field data. The definitions of the simplified orthotropic
material parameters occur in the material plane. Matching only the maximum single
out-of-plane bulge deflection, or matching the full 3D displacement components re-
sulted in similar material parameters that were thought to be invalid. The resulting
in-plane stiffness moduli calibrated were potentially non-physical. However, better
in-plane stiffness moduli were identified when the in-plane deflections were weighted
equal to the out-of-plane deflections using the full-field measurements. This hope-
fully serves as an important lesson when working with full-field data that has one or
two dominating components, as potentially the smaller value measurements may be
significantly more important.
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