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Reliability based design optimization (RBDO) is often used with specified maximum failure
probability for each component, but it can also be used for risk allocation between components.
This is done, however under the assumption that the distribution of random variables is known.
Design based on regulation (e.g. FAA) allows for the case when distributions are unknown, but
it treats components with the same safety margins, not allowing for risk allocation between com-
ponents. In particular, the regulatory treatment of unknown distribution use non-parametric
tolerance intervals to conservatively represent the uncertainty from limited data. One non-
parametric tolerance interval methods assumes the true distribution is continuous, while the
more restricted Hanson-Koopmans method applies to a class of continuous distributions. The
allowable failure strength of a composite material was compared using these non-parametric
methods to tolerance intervals assuming a Normal distribution. A simple RBDO problem
using the Hanson-Koopmans method was presented to design a UAV wing and horizontal tail
to minimize weight, with risk allocation between the two components. The RBDO optimum
used a higher effective safety factor on the lighter horizontal tail, which was compared to a
design that used the same safety factor on both the tail and wing.

I. Nomenclature

γ = Confidence level
σa = Allowable failure stress
σn = New failure stress
e = Cost function
f = Joint probability density function
FX = Cumulative distribution function for random variable X
P = Percentile / probability
Pt = Tail allowable percentile
Pw = Wing allowable percentile
Pf = Probability of failure
P = Probability set
wi = Initial weight
wn = New weight
wt = Horizontal tail weight
ww = Wing weight
X = Random variable
x = Design variables

II. Introduction
Reliability based design optimization (RBDO) are often used in the literature with specified probability of failure

for each component. While this does not perform risk allocation between components, a change in formulation does
allow risk allocation, as demonstrated by Acar and Haftka [1]. Regulation-based design, which specifies constant safety
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margins for components and thus does not promote risk allocation between them. This regulation based design is usually
called deterministic design because the optimization is performed deterministically, even though the material allowables
are determined probabistically.

Acar and Haftka [1] illustrated a safer aircraft design for a configuration made of two panels of substantially unequal
weight. The design where risk was allocated between the two panels was safer than a design using equal safety factors
for both panels. Both designs used the same total weight. The previous study assumed that the failure stress follows a
Normal distribution. Many other RBDO problems presented in literature assume either that the true distribution is
known or can be identified [2–5]. Unfortunately, it is difficult to accurately identify the source distribution with limited
prior knowledge and sparse data [6, 7].

There have been recent interest in developing distribution free RBDOs to overcome the difficulty associated with
identifying statistical distributions. Kanno [8] presented a non-parametric RBDO problem to design a truss with varying
loads from an unknown distribution. Ohsaki et al. [9] presented a multi-objective non-parametric RBDO to design a
shear frame for all possible robustness levels. The robustness levels can be thought of as non-parametric tolerance
intervals (TI) for various percentiles and confidence levels. These non-parametric tolerance intervals are one-order
statistics, meaning the TI is determined from one sample within a set of samples. These recent works both utilize
non-parametric order statistics to formulate the RBDO problem. The main problems with this method is that available
percentile/confidence level combinations depend upon the number of samples, and extrapolation beyond the given worst
sample is not possible with this non-parametric method.

This paper will apply a variation of non-parametric order statistics to an RBDO problem similar to [1], where
aircraft panels are designed by varying the allowable safety margin for a fixed confidence level. This formulation can be
described as using TIs within an RBDO. Construction of TIs is discussed for both known and unknown distributions.
The paper goes on to present two different non-parametric methods using order statistics. The first method assumes that
the distribution of the true function is continuous (one-order statistic). The other non-parametric method is a two-order
statistic, which uses two samples from the sample set to determine a TI. The assumption of the two-order statistic is that
the true distribution belongs to the log-concave CDF class of statistical distributions[10–12]. These TIs are then used to
determine the allowable failure strength of a composite material.

The paper goes on to present a simple RBDO problem, where the primary uncertainty is due to the allowable failure
strength in a composite material. The RBDO problem is applied to the design of an unmanned aerial vehicle (UAV),
where the objective is to minimize weight by allocating risk between the wing and horizontal tail. It’s required that
the probability of failure of the RBDO design must be no worse than a design where the components used the same
allowable failure stress. The allowable stresses for the RBDO problem were determined using the Hanson-Koopmans
non-parametric method [11]. This method does not assume the failure stress to belong to a single particular distribution,
but rather to a class of statistical distributions.

III. RBDO Based on Non-parametric Methods
A typical RBDO can be presented as

Minimize: e(x) (1)
Subject to: Pfailure ≤ Prequired (2)

where Pfailure is calculated for known statistical distributions by integrating the joint probability density over the domain

Pfailure =

∫
· · ·

∫
D

fX (x)dx. (3)

There can often be epistemic uncertainty associated with the random quantity X due to the lack of data, and in such
cases the RBDO is expressed as

Minimize: e(x) (4)
Subject to: P[Pfailure ≤ Prequired] ≥ γ (5)

where the designer will need to specify the confidence level γ in order to satisfy the constraint.
When there is limited data and the distribution that describes the random variable X is known, then it is possible

to numerically calculate whether Prequired is satisfied to a desired confidence level. In cases when the distribution of
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a random variable X is unknown, then non-parametric statistics will allow for a provably conservative estimation of
whether Prequired is satisfied. The statistical requirements for the non-parametric methods to be provably conservative
are discussed in the next section.

IV. One-Sided Tolerance Intervals for Allowables
A one-sided tolerance interval (TI) can be constructed to represent the allowable failure strength Sa of a material.

The TI is expressed as
P[FX (Sa) ≤ P] ≥ γ (6)

for a given percentile P and confidence level γ. The Federal Aviation Administration (FAA) recommends (14 CFR
25.613) different allowable failure strengths deepening upon the redundancy of the design [13]. The 1st percentile with
95% confidence (A-basis) is used in designs where failure of the single member would result in the loss of structural
integrity. The 10th with 95% confidence (B-Basis) is used in designs of redundant structures, in which failure of a single
member would result in the load being safely distributed on the remaining members.

An illustration depicting the process of finding the allowable stress of a material from a sample of tensile tests is
shown in Fig. 1. Finding the 10th to 95% confidence can be thought of as first constructing a distribution of possible
10th percentiles. The 5th percentile of this distribution represents the allowable failure stress to 95% confidence. When
the true distribution is known, then the TI can be numerically calculated to a desired precision.
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Fig. 1 Illustration of approximating the 10th percentile with 95% confidence from a random sample which
comes from an unknown distribution.

The one-order statistic non-parametric method was used in the RBDO problems by Kanno [8] and [9]. The
underlying assumption required by this one-order statistic method is that the true distribution is continuous [14, 15]. A
binomial distribution is used in order to conservatively bound the TI for any continues distribution. Unfortunately the
one-order statistic is incapable of extrapolating outside of a discrete sample set, which means that calculation of an
A-basis or B-basis may require a large number of expensive samples. The smallest percentile (for a lower tail probability)
depends on the total number of samples. For example the minimum number of samples required to estimate the A-basis
is 299, in which case the allowable is the smallest of the 299 samples [10, 16]. The single sample which represents the
TI is the reason the method is called a one-order statistic. Another useful relationship to remember is that estimating the
B-basis requires at least 29 samples, where the B-basis occurs from the smallest of the 29 samples.

Hanson and Koopmans [11] derived a proof for non-parametric TIs in order to remedy the shortcomings of
the one-order statistic method. The Hanson-Koopmans non-parametric method can determine a TI for arbitrary
percentile and confidence level using two samples from the set (e.g. a two-order statistic). The Hanson-Koopmans
two-order statistic is capable of extrapolating beyond the smallest sample, while extrapolation is not possible with
one-order statistics. Two samples are the minimum required for the Hanson-Koopmans method to estimate any
percentile/confidence TI. The underlying assumption is that the true distribution belongs to the class of distributions
which have a logarithmically concave (log-concave) cumulative distribution function (CDF). The log-concave CDF class
of distributions includes all Normal, Exponential, Gumbel, Laplace, Logistic, Rayleigh, Maxwell, Uniform, Lognormal,
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and Pareto distributions [17]. Additionally, the log-concave CDF class includes subsets of the Weibull, Gamma, Beta,
Power Function, Chi-square, and Chi distributions [18]. The log of the CDF from Student’s t-distribution is convex, and
thus doesn’t fall within the log-concave CDF class.

Solving the integrals in [11] or [12] to determine Hanson-Koopmans TI for any percentile/confidence is not a trivial
task, and thus a small Python library was created to quickly calculate the TI∗. The default solver uses the secant method
to determine the TI for any percentile/confidence level. The approximation from Vangel [12] is used as the initial guess
for the root-finding algorithm. There is some choice between which two samples to select when using this method.
This work uses the first and last ordered samples when presenting Hanson-Koopmans results, because the first and last
samples are used for A-basis values [10, 16].

When the distribution is known or can be identified, analytical expressions can be used to determine a TI. One of the
most popular statistical distributions is the Normal distribution. The Normal TI can be calculated with tables in [19], or
with the analytical equations expressed in [20]. The TI from a Normal distribution occurs at some factor of sample
standard deviations away from the sample mean, where the factor varies with the chosen percentile and confidence level.

V. Example with Failure Strength of Composite Material
A histogram of the failure strength on 18 open hole tensile tests is presented in Fig. 2. The tests were con-

ducted by Tomblin and Seneviratne [21], have a width to hole diameter ratio of w
d =

4
3 , and utilized a layup of

[0/90/0/90/45/45/90/0/90/0]s. The failure strength does not appear to follow a common distribution, because the
histogram depicts a large gap next to the most likely bin. The individual failure strength values were [66.90, 64.04,
62.88, 65.95, 63.25, 59.60, 65.68, 65.71, 64.05, 68.07, 62.77, 64.71, 60.34, 63.76, 58.66, 60.14, 62.68, 58.82] ksi.
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Fig. 2 Histogram of 18 tests of a composite material failure strength.

With the 18 open tensile tests, TIs were calculated using the three different methods. Percentiles were varied from
0.01 to 0.4, and confidence levels were varied from 0.6 to 0.95. The results are shown as contour plots in Fig. 3. The
one-order and two-order statistics have discrete steps, while TIs for the Normal distribution are smooth with respect
to the percentile/confidence combinations. There is a large region missing for the one-order statistic method, which
signifies the percentile/confidence limit with only 18 samples. This region where the one-order statistic exists, the
two-order Hanson-Koopmans method produces the exact same result as the one-order statistic. Where the one-order
statistic is undefined, the two-order Hanson-Koopmans method extrapolates beyond smallest sample. This phenomenon
occurs, because the two-order Hanson-Koopmans method was only intended to be applied in the region where the
one-order statistics were undefined. The assumption that the Hanson-Koopmans method applies to the log-concave
CDF class is only when extrapolation beyond the smallest sample is needed.

Table 1 shows comparison of the allowable failure stress from the different TI methods for select percentile/confidence
levels. Unfortunately, the one-order statistic can not be used to estimate A-basis or B-basis values with only 18 samples.
The two-order Hanson-Koopmans TIs presented in the table are more conservative than the TIs from a Normal

∗Python code to calculate the Hanson-Koopmans TI is available online at https://github.com/cjekel/tolerance_interval_py.
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(a) Non-parametric one-order statistic method
for a continuous distribution
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(b) Hanson-Koopmans two-order statistic
method for log-concave CDF class
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(c) Normal distribution

Fig. 3 Allowable failure strength from the 18 tests as function of percentile and confidence using (a) one-order
non-parametric statistic, (b) two-order Hanson-Koopmans, and (c) Normal distribution. The grid space on (a)
denotes the region where the TI does not exist.

Table 1 Comparison of allowables from the different tolerance interval (TI) methods. Note that if the TI is
not possible an N/A is used.

Any continuous distribution Log-concave CDF class
One-order statistic Two-order statistic Normal distribution

P/γ Non-parametric, ksi Hanson-Koopmans, ksi Analytic, ksi
0.01 / 0.95 N/A 47.0 53.8
0.10 / 0.95 N/A 56.6 57.7
0.10 / 0.80 58.7 58.7 58.7
0.20 / 0.85 58.8 58.8 59.9

distribution. The Hanson-Koopmans method can be seen to revert to the more permissive (any continuous distribution)
non-parametric method when P = 0.1, γ = 0.8 and P = 0.2, γ = 0.85 with 18 samples. This occurs when the bound
from the Hanson-Koopmans method occurs within the sample range (as opposed to extrapolating beyond the smallest
sample).

VI. Example of Risk Allocation Design Optimization
Consider a single propeller UAV with design specifications listed in Table 2. The UAV follows a design of equal

safety margins, where the A-basis allowable (1% with 95% confidence) was used for the skin on the wing and horizontal
tail. The A-basis failure strength σa from the previous 18 tension tests is 46.95 ksi using the Hanson-Koopmans method.
The thickness of the wing and tail skins were varied, such that each component was fully stressed. The probability of
failure of the system can then be estimated assuming the failure of each component is independent. Since the Wing and
tail are fully stressed, the probability of failure of the wing and tail are each 1%. Then neglecting other components in
the design, the system probability of failure Pf is approximately 2%,

Pf = 1 − (1 − Pw)(1 − Pt ) (7)
= 1 − (1 − 0.01)(1 − 0.01) (8)
≈ 0.02 (9)

where Pw and Pt are the allowable percentiles from the wing and horizontal tail. It should be stated that it is impossible
to know the true probability of failure due to a large number of unknown uncertainties. Despite not knowing the true
probability of failure, [1] demonstrated that an aircraft design could be improved with unequal safety factors.

Following similar assumptions used by [1], the weight of the wing and tail become inversely proportional to the
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Table 2 Specifications of UAV.

Description Value
Takeoff weight 15 lb
Wing weight 1.35 lb
Horizontal tail weight 0.3 lb
Wingspan 9 ft

allowable failure stress. This relationship can be expressed as

σa
σn
=

wn

wi
(10)

where σa is the A-basis failure strength, σn is the new allowable failure strength, wn is the new component weight, and
wi is the initial component weight. This relationship assumes that changes in the weight result from changes in material
thickness of the skin on the wing and horizontal tail. The weight of internal components within the skin is assumed to
be negligible when compared to the weight of the skin.

An RBDO problem can be setup to improve from the design using equal safety margin. The optimization problem
to minimize weight is defined as

minw = ww(pw, γw) + wt (pt, γt ) (11)
such that: Pf ≤ 0.02 (12)

γw = γt = 0.95 (13)

where design variables (Pw and Pt ) are the percentile of the allowable failure stress for the wing and tail designs. The
Hanson-Koopmans method is used to estimate the allowable stress with 95% confidence. The constraint ensures that the
new probabilistic design has the same probability of failure as the previous design.

Figure 4 shows a contour plot of the objective from the RBDO with respect to the wing and tail allowable percentiles.
These contours show that the overall weight is more sensitive to the wing allowable, which is the heavier of the two
components. The optimization problem can be reduced to a one dimensional search along the probability of failure
constraint boundary, as illustrated in Fig. 5. The curve represents how changes in the wing allowable have on the total
weight, and all points on the curve have the same probability of failure. The wing and tail of the RBDO optimum offers
some weight improvement when compared with the previous design using equal safety margin.
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Fig. 4 Contour plot of the weight with respect to wing and horizontal tail allowables from the Hanson-
Koopmans method. The constraint boundary represents a 2% probability of failure.
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Fig. 5 One dimensional plot along the constraint boundary shows the new RBDO optimum and the location
of the previous UAV design, where the wing and tail used the A-basis allowable from the Hanson-Koopmans
method.

The resulting two different designs are described in Table 3. One design required the wing and tail to be designed
with the same A-basis allowable (and effective safety factor), while the RBDO optimum allocates risk between the wing
and tail respectively. The RBDO optimum allocated risk from the lighter component (horizontal tail) to the heavier
component (UAV wing), in order to minimize the total weight.

Table 3 Comparison of the UAV specifications from the previous equal safety margin design and the new
RBDO optimal design.

Equal safety margin RBDO optimum RBDO optimum
TI method Hanson-Koopmans Hanson-Koopmans Normal Distribution
Probability of Failure Pf 0.020 0.020 0.020
Wing allowable percentile Pw 0.010 0.016 0.017
Tail allowable percentile Pt 0.010 0.004 0.003
Wing allowable stress, ksi 46.95 48.77 54.56
Tail allowable stress, ksi 46.95 43.58 52.36
Wing weight ww , lb 1.35 1.30 1.16
Tail weight wt , lb 0.30 0.32 0.27
Weight w = ww + wt , lb 1.65 1.62 1.43

The RBDO optimum reduced the weight by 2% (or 0.03 lb), for the same probability of failure as a design where
both components utilized the same A-basis allowable failure strength. This is perhaps an underwhelming result when
compared to the 15 lb takeoff weight of the UAV. The more interesting aspect is that the RBDO allocates risk depending
upon the component weight. The wing allowable increased from 1% to 1.6%, while the tail allowable reduced from 1%
to 0.4%. Additionally, the RBDO was performed assuming that the failure stress belonged to the log-concave CDF class
of distributions, rather than assuming the failure stress belonged to a single continuous distribution.

Similar risk allocation results occur if TIs from the Normal distribution are used instead of the Hanson-Koopmans
method. The last column in Table 3 shows the results which assume the composite failure strength followed a Normal
distribution. The wing allowable was increased from 1% to 1.7%, instead of 1.6% when the Hanson-Koopmans method
was used. The tail allowable was decreased from 1% to 0.3%, instead of 0.4% from the Hanson-Koopmans method.
This appears to show that the risk allocation was not sensitive to using the Normal distribution or the log-concave CDF
class of distributions.

The optimum using the Normal distribution TI was about 12% lighter than using the Hanson-Koopmans method.
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Although the lighter design is not as safe, especially if the failure strength does not actually follow a Normal distribution.
The wing and tail allowable stresses of 54.56 ksi and 52.36 ksi correspond to the 6.3 and 3.8 percentiles, if the
Hanson-Koopmans method was used to 95% confidence. If the failure strength did not follow the Normal distribution,
but rather followed the log-concave CDF class, then the small 2% becomes a much larger 10% probability of failure.
This may still be acceptable risk for a UAV rather than a manned vehicle.

VII. Conclusion
Typical RBDO problems assume either that the true distribution is known or can be identified, however identifying

the distribution can be difficult in practice. The failure strength from 18 replicate tests on the same composite were
presented as an example where the true distribution is unknown. Non-parametric tolerance intervals (TI) were disused
for cases where the true distribution is not known. The Hanson-Koopmans non-parametric method assumes the true
distribution to belong to the log-concave CDF class of distributions, which accounts for the epistemic uncertainty in the
unknown distribution. The Hanson-Koopmans method was then used in an RBDO problem to minimize weight of the
wing and horizontal tail for a UAV. The RBDO solution allocated risk between the two components of substantially
unequally weight. Risk allocation resulted in a lighter design for the same probability of failure as a design with equal
safety margins on the wing and horizontal tail. The proportion of risk allocation appeared insensitive to the TI method,
as the Hanson-Koopmans RBDO results were similar to assuming the failure strength followed a Normal distribution.
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