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Abstract

Obtaining Non-linear Orthotropic Material Models for

PVC-Coated Polyester via Inverse Bubble In�ation

C F Jekel Jr

Department of Mechanical and Mechatronic Engineering,
University of Stellenbosch,

Private Bag X1, Matieland 7602, South Africa.

Thesis: MEng (Mech)

March 2016

Uniaxial tests in the warp, �ll, and 45◦ bias direction were performed on PVC-
coated polyester to determine a non-linear orthotropic material model. Op-
timization was used to minimize the load displacement error of the uniaxial
test results and uniaxial �nite element models. A method for determining
non-linear orthotropic material models from an inverse bubble in�ation test is
described. The inverse bubble in�ation method is demonstrated with a known
non-linear orthotropic material model. Inverse bubble in�ation analyses were
performed on four PVC-coated polyester samples, and a unique non-linear
orthotropic material model was determined from each sample. Three point
bending tests of in�atable PVC-coated polyester cylinders were used to com-
pare and validate the material models. Finite element models were created
replicating the three point bending tests. It was shown that the bubble mate-
rial models overestimate the sti�ness of the in�atable beams, while the uniaxial
material model underestimates the sti�ness.
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Uittreksel

Verkryging an Nie-Liniêre Ortotropiese Materiaalmodelle

vir PVC-Bedekte Poliëster Deur Omgekeerde

Borrel-Opblasing

(�Obtaining Non-linear Orthotropic Material Models for PVC-Coated Polyester via
Inverse Bubble In�ation�)

C F Jekel Jr

Departement Meganiese en Megatroniese Ingenieurswese,
Universiteit van Stellenbosch,

Privaatsak X1, Matieland 7602, Suid Afrika.

Tesis: MIng (Meg)

Maart 2016

Eenassige (of uniaksiale) toetse in die skering-, inslag- en 45° skuins-rigtings
is uitgevoer op PVC -bedekte poliëster om `n nie-liniêre ortotropiese mate-
riaal model vas te stel. Optimering is gebruik om die ladingsverplasingsfout
van die uniaksiaaltoets se resultate en uniaksiaal eindige element-modelle te
minimeer. `n Metode vir die vasstelling van nie-liniêre ortotropiese materi-
aalmodelle vanaf `n omgekeerde borrel-opblaastoets word beskryf. Die omge-
keerde borrel-opblaasmetode word gedemonstreer met `n bekende nie-liniêre
ortotropiese materiaalmodel. Omgekeerde borrel-opblaas-analise is uitgevoer
op vier PVC-bedekte poliëster voorbeelde, en `n unieke nie-liniêre ortotropiese
materiaalmodel is vasgestel uit elke voorbeeld. Drie-punt buigtoetse op die op-
blaasbare PVC-bedekte poliëster-silinders is gebruik om die materiaalmodelle
te vergelyk en te veri�eer. Eindige element-modelle is geskep deur die drie-punt
toetse te dupliseer. Die resultate het gewys dat die borrel-materiaalmodelle die
styfheid van die opblaasbare balke oorskat, en die uniaksiale materiaalmodel
die styfheid onderskat.
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Chapter 1

Introduction

This chapter provides the background and motivation for investigating PVC-
coated polyester, followed by a discussion of the objectives, goals, and contri-
butions of this research. The layout of this thesis is presented at the end of
this chapter.

1.1 Background

A structure for which additional sti�ness and rigidity is obtained from an
internalized pressure is an in�atable structure. In�atable structures are useful
in a variety of applications. Often in�atable structures are known to be a
cheap and lightweight alternative to conventional structures. Most in�atable
structures are made from pliable material which can be rolled up and folded
for storage. These structures can thus be stored compactly when de�ated, and
deployed rapidly when in�ated. This high stowed to deployed volume ratio, in
addition to rapid deployment, and high strength-to-weight nature have allowed
for in�atable structures to be found in a wide variety of applications such as
temporary shelters, roofs, and portable bridges.

An in�atable structural concept was presented in 2004 called Tensairity®,
which physically separates the tension and compression elements of a beam
with a pressurized volume (Luchsinger et al., 2004). Tensairity® structures
have been used in the civil engineering �eld for creating lightweight roofs and
bridges. To demonstrate the potential of Tensairity®, a mobile bridge was
made, by Luchsinger et al. (2011), with an 8 m span from two Tensairity®

girders. Each girder had a mass of 68 kg, and both girders �t inside the trunk
of a small car. The girders can be assembled into a bridge in under 30 minutes.
A small car was then parked on top of the bridge. This temporary bridge is
just one demonstration of the rapid deployment and e�cient volume storage
potential of in�atable structures.

In�atable structures have also been examined as wings on Unmanned Aerial
Vehicles (UAVs). Norris and Pulliam (2009) discussed a history of in�atable

1
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2 CHAPTER 1. INTRODUCTION

UAV wings with the �rst in�atable wing on a UAV dating back to the 1970s.
A majority of the in�atable wings presented allowed for the wings to be packed
tightly around the fuselage of the UAV. This con�guration greatly reduces the
pro�le of the entire UAV allowing for easier storage. An additional bene�t is
that the in�atable wings can be made lighter than conventional wings. Al-
together the use of in�atable wings greatly improves the stowed to deployed
volume of UAVs. However, much is unknown about the performance capabili-
ties and limitations of in�atable wings.

Over the last decade, wind turbine capacities have continued to increase,
resulting in larger wind turbine blades. Some of the largest blades, such as the
Siemens B75, are 75 m long and weigh 25 tons. It is very expensive and logisti-
cally challenging to transport these large turbine blades to their site location.
NREL's 2010 Cost of Wind Energy Review (Tegen et al., 2012) showed that the
single most expensive individual component of a 1.5 MW system wind turbine
were the blades based on the land-based levelized cost of energy. As discussed,
in�atable structures tend to be cheaper alternative to conventional structures
while providing for e�cient storage and transportation. Thus developing an
in�atable wind turbine or fan blade may prove to be a favorable addition to
conventional blade technology. However unlike in�atable UAV wings, there
has hardly been any development in rotating in�atable blades.

There are a number of patents for in�atable wind turbine blades, however
most patents fail to mention practical information such as speci�c materials,
operating pressures, and seal locations. A GE patent �led in 2009 for an
in�atable wind turbine blade uses an in�atable cavity and �exible skin (Cairo,
2011). When the in�atable cavity is in�ated, the structure is sti�ened, pulling
the �exible skin into the shape of an airfoil. Potentially such a cavity could
be made from in�atable air cylinders. A more complex design is shown in
a 2008 German patent, which can use multiple in�atable cavities covered by
a cloth to make up the blade's surface (Roland and Martin Fritzsche, 2008).
Both of these patents show how concepts of an in�atable blade may work, while
highlighting the advantages of an in�atable blade, but lack the detail necessary
to create a working blade. A Chinese patent discusses a semi-in�atable blade
of which the leading edge is non pressurized and rigid, but the trailing edge
is made from a pressure �lled fabric (ZENG, 2013). This design opens the
possibility of a hybrid blade, in which there is a solid torque transfer beam that
is attached to a pressurized airfoil. Overall, the patents demonstrate interest in
in�atable blades while lacking solid examples and proof of their concepts. Since
in�atable rotary blades are largely an underdeveloped technology, the potential
research scope of investigating in�atable blades is tremendous, spanning across
a number of engineering disciplines.

The design of new structures often requires some form of numerical anal-
ysis. The Finite Element (FE) method has been an important tool used to
predict the load, de�ection, and failure of fabric structures. FE models of in-
�atable structures provide information that is bene�cial to the design process.
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1.2. OBJECTIVES 3

The ability to predict structural compliance and approximate failure allows en-
gineers to intelligently evaluate design performance. However, the accuracy of
these models depends largely on the ability for the material model to replicate
the physical behavior of the material. It is a common subject of many research
papers to investigate the method for obtaining suitable material models.

This thesis investigates the method of obtaining a material model suitable
for FE analysis of in�atable structures. A new inverse bubble in�ation test
method is proposed and investigated, with a goal of making it easier to obtain
a non-linear material model for various membrane materials used in in�atable
structures. The performance of material models derived from the inverse bub-
ble test and conventional uni-axial testing will be evaluated and compared. All
FE analysis were performed in MSC Marc, an implicit non-linear FE solver.
The material models will be experimentally validated utilizing a separate load
case.

Ceasar In�atables, a specialty manufacturer of in�atable racing boats, was
contacted for assistance with this project. The in�atable racing boats they
manufacture are made from PVC-coated polyester fabric, a common mem-
brane material. Caesar In�atables made three in�atable cylinders for the ex-
perimental validation of the material models. These cylinders were modeled
in MSC Marc, and physically tested under a three-point bending load case.
The accuracy of the numerical model at predicting the bending behavior of
the in�atable cylinder will largely depended upon the perfWWormance of the
material model.

This thesis is a contribution to the ongoing research in in�atable struc-
tures. Details on obtaining a non-linear orthotropic material model from
uni-axial testing, along with the test data on PVC-coated polyester will be
provided. The new inverse bubble in�ation technique serves to provide an im-
proved method for obtaining accurate material models for a variety of in�atable
membrane materials. The creation of FE models of an in�atable cylinder and
in�ated bubble are discussed in detail. The methods for creating these numer-
ical models are not limited to cylinders and bubbles, and will be applicable for
a variety of other in�atable structures.

1.2 Objectives

This thesis develops a material model for PVC-coated polyester. The PVC-
coated polyester under investigation is VALMEX® 7318 5340 manufactured
by Mehler Texnologies GmbH. The processes of obtaining this material model
should be simple, robust, and applicable for other membrane material used
in in�atable structures. For these reasons an inverse bubble in�ation test
is purposed to be favorable over traditional uni-axial testing. The method
developed to determine material parameters from the inverse bubble in�ation
test serves as a black box. The test data can be entered into the black box
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which produces a material model. This �nished product can greatly reduce
the required time by the engineer to develop a material model for a structural
membrane, in addition reducing the required number of tests. The bubble
in�ation test subjects the material to a complex load case, which may make
it possible to develop a material model that would otherwise be di�cult to
obtain from conventional methods. The material models and FE analysis of
the in�atable structures are performed in MSC Marc, however the principles
and processes covered in this thesis will be applicable to other non-linear FE
solvers.

As with all numerical models, the model's capability of replicating reality is
largely unknown without some form of experimental validation. For this reason
three in�atable cylinders have been manufactured from PVC-coated polyester
with the intent of providing the experimental validation for the material model
and numerical analysis. The cylinders are subjected to a three point bending
test, intended as a simple load case in which the boundary conditions are easily
replicated in a FE analysis of the test. The capabilities of the material model
and numerical analysis will be de�ned by how well the physical test results are
matched.

It is the intention of the processes developed in this thesis to prove useful
in the design and analysis of in�atable structures. The ability for material
models to accurately replicate the material's physical behavior is a widely
studied research �eld, in�uenced by many factors. It is very easy to develop
complicated models that are impractical to be utilized at a design stage by
being either too time consuming to develop, computational impractical, or
both. Furthermore, many characteristics of the material behavior will not be
investigated because of a time constraint. Thus it is important to narrow the
focus of this project by mentioning subjects that won't be investigated.

It is known that the PVC-coated polyester under investigation may exhibit
highly non-linear behavior. Complicated non-linear behavior include material
creep, biaxial load-ratio dependencies, and load rate dependencies. Much of
this behavior is largely out of the scope of this project, but may be suitable
for future work. The purpose of this work is to prove useful from a design per-
spective, which ultimately leads to accurately predicting a load deformation
response through FE analysis. Further material behavior can be researched
and added to the material model which accurately represents the load defor-
mation response. Thus to serve as a starting point, this project focuses on
obtaining load deformation behavior of the PVC-Coated polyester for imple-
mentation in the FE method.

The computational intensity of the material model should not inhibit the
modeling of an entire in�atable structure. It is the fundamental goal that the
methods developed in this thesis will be useful as a design tool when analyzing
in�atable structures. Thus potential material models and approaches deemed
too computational expensive will not be explored further in this thesis. The
material models developed should be simple to implement while maintaining
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e�ciency when modeling a complete structure.
Only one material is tested in this thesis. While the material of focus for

this thesis is PVC-coated polyester, the goal is not to present the material
model for this material. Rather the focus of this project lies in the methods
utilized in obtaining material behavior for use in the FE method. Speci�-
cally, the capability of the new inverse bubble in�ation test in comparison to
traditional tests on PVC-coated polyester. The contributions lie in the de-
velopment of the inverse bubble test, serving as a simpler tool for obtaining
material models for in�atable membrane materials.

A two dimensional non-linear elastic orthotropic material model is inves-
tigated for modeling the behavior of PVC-coated polyester. Structural mem-
brane materials, used in in�atable structures, are generally modeled as or-
thotropic materials. Although this investigation only looks at PVC-coated
polyesters, the non-linear orthotropic material model determined from inverse
bubble in�ation is applicable for other structural membrane materials.

The objectives of this thesis are summarized by the following points:

� Obtain a material model for PVC-coated polyester from conventional
testing

� De�ne a black box method to test and obtain material models

� Use the black box method to obtain a material model, then compare the
material models resulting from the black box and conventional tests

� Experimentally validate the material models by testing an in�atable
structure, and determine which method produced the best material model

1.3 Thesis Outline

Throughout the entirety of this project, a collection of literature was accumu-
lated and analyzed. The results of the literature study are found in Chapter 2.
The results of uni-axial testing on the PVC-coated polyester are presented in
Chapter 3, along with the material model developed from these tests. The
methodology utilized in the inverse bubble in�ation test is discussed in Chap-
ter 4. Followed by the test results and discussion of the inverse bubble in�ation
tests on the PVC-coated polyester in Chapter 5. The experimental validation
of the material models utilizing the in�atable cylinders is found in Chapter 6.
The results of this project are concluded in Chapter 7 with the discussion of
future work.
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Chapter 2

Literature and Concepts

This chapter discusses theory, concepts, and literature necessary for under-
standing the work presented in this thesis. The chapter begins by discussing
the various material models, and methods used to obtain the models for PVC-
coated polyester in literature. A quick overview of bubble in�ation tests
and the inverse method is provided. Optimization was used throughout this
project, so a background on optimization is presented. All �nite element (FE)
analyses in this thesis were solved with the non-linear FE solver MSC Marc,
thus a brief description on how MSC Marc di�ers from conventional linear FE
solvers is provided. Digital Image Correlation (DIC) methods and systems
used throughout this project are explained. Lastly, the chapter ends with a
literature review on in�atable beam testing.

2.1 FE Material Models and PVC-coated

Polyester

Technical woven textiles, including PVC-coated polyester, are generally assem-
bled utilizing two distinct yarn directions. These yarn directions are known
as the warp and �ll. The �ll yarn is also commonly refereed to as weft. In a
typical weave, the warp yarns are pulled taut while the �ll yarns are threaded
through the warp yarns. As a result of the weave assembly, the warp and �ll
yarns lay orthogonal to each other in the plane of the fabric. Woven textiles
are known to exhibit complex material behavior, largely due to their construc-
tion. Since yarns in the warp direction were previously tensioned unlike in the
�ll direction, it is expected that the material will exhibit a sti�er response in
the warp direction. The interactions between the coated matrix and the woven
yarns adds an additional layer of complexity for coated fabrics.

It is a di�cult and widely researched topic to generate material models,
suitable for the FE method that are capable of reproducing the behavior of
woven textiles. The complex behavior, due to the assembly, of woven textiles
further increases the di�culty of creating material models. While many dif-

6

Stellenbosch University  https://scholar.sun.ac.za



2.1. FE MATERIAL MODELS AND PVC-COATED POLYESTER 7

ferent material models have been used to replicate the mechanical behavior of
woven textiles, they generally fall into one of two categories: micromechanical
or macromechanical.

Micromechanical models analyze the microscopic interactions of the mate-
rial. For coated fabrics this would include the complicated behavior of woven
fabrics such as crimp interchange, friction and contact between yarns, vari-
ous extensions of the yarn directions, as well as the interaction between yarns
and the coating. It is impractical to model a complete structure with these
yarn interactions with the FE method, thus micromechanical models tend to
be limited to just a unit cell which is representative of the �ber interactions.
The unit cell would thus be used to generate the constitutive relations for
a macromechanical material model suitable for the FE analysis of an entire
in�atable structure.

Macromechanical models assume the material to be of a single continuum,
for which the constitutive relationships can be determined from material test-
ing. Often uniaxial and biaxial tests are performed on the material, in which
case the experimental stress/strain relationship is used to characterize the ma-
terial. An example of a macromechanical material model would be the plane
stress constant thickness orthotropic model. This model has been commonly
used, for membrane structures, because of the model's ability to exhibit di-
rection dependent sti�ness. Four constants are needed to de�ne the material
model, the Young's moduli in the warp and �ll directions (E1, E2), Poisson's
ratio (ν12), and the shear modulus (G12). If a material does not exhibit linear
behavior, a non-linear material model can be used to improve the accuracy of
the FE model.

PVC-coated polyester has been known to exhibit anisotropic behavior.
Chen et al. (2007) performed uni-axial tests on PVC-coated polyester for
varying bias angles of 15◦, 30◦, 45◦, 60◦, and 75◦, as well as the warp and
�ll material directions. A unique stress strain curve was found for each test,
demonstrating the anisotropic material behavior of the coated fabric. Despite
this anisotropic behavior, it was found that a linear orthotropic elastic mate-
rial model was suitable for replicating the uniaxial tests in the warp, �ll, and
45◦ bias directions within 20 percent of the failure tensile strength.

Cavallaro et al. (2003) attempted to model a woven in�atable beam with
a micromechanical material model. Symmetry was used to simplify the FE
model. The FE model included individual yarn interactions such as con-
tact and friction, as well as a bladder, but the model was plagued with
convergence problems and deemed too computationally expensive. Thus a
macromechancial material model was used to model the entire air beam. A
unit cell model, consisting of beam elements, was utilized to obtain the param-
eters for a linear orthotropic material model. Shell elements were utilized to
model the woven air beam in a bending case, which represented an experimen-
tal bending test on the beam. However, the FE model did not correlate well
with experimental test results. This poor correlation was blamed on the ma-
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8 CHAPTER 2. LITERATURE AND CONCEPTS

terial model's inability to capture the non-linear shear response of the woven
textiles.

It has been observed that the strength of coated fabrics in the warp and �ll
directions is dependent upon the ratio of the load in their respective directions.
Galliot and Luchsinger (2009) performed biaxial extensions of PVC-coated
polyester. The tests investigated the load ratio dependent behavior of the
material, by subjecting the material to �ve di�erent load ratios of 5:1, 2:1, 1:1,
1:2, and 1:5. The biaxial test subjected the material warp and �ll directions
to distinct loads, with a 5:1 load ratio meaning that the load in the warp
direction was 5 times more than the load in the �ll direction. Young's moduli
were calculated in the two material directions for each test. A unique Young's
modulus was then determined for each test, in both the warp and �ll directions.
A non-linear material model was proposed which accounted for the di�erent
responses upon the load ratio. The material model was fundamentally a plane
stress linear orthotropic material model. Unique Young's moduli for both the
warp and �ll directions (E1, E2) were determined at each iteration, based upon
the elemental stress ratios. The end result was a non-linear material model
capable of exhibiting load ratio dependent behavior without an increase to
computational time.

Both uniaxial and biaxial tensile tests were conducted on PVC-coated
polyester by Ambroziak and Kªosowski (2014). The uniaxial tests were con-
ducted in the material warp and �ll directions. Seven di�erent load ratios of
8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8 were investigated for the biaxial tests. Stress
strain curves were calculated in both material directions from the resulting
tests. It was found that nearly identical stress strain curves were produced
from the 1:1 biaxial load and the uniaxial tests. Thus uniaxial tests in the
warp and �ll direction are a good approximation of the biaxial stress state
resulting from a 1:1 load ratio. In addition, all load ratios produced very
similar stress strain relationships. The coe�cients of determination between
stress strain curves from the various load ratios were above 0.9. While load
ratio dependent behavior is present, this suggests it is not the dominating
factor in the material non-linearity. It was noted that the non-linear stress
strain curves exhibited by the material could be well approximated utilizing
a piece-wise linear function. In an e�ort to capture the non-linearity of the
PVC-coated polyester, a tri-linear orthotropic material model was proposed.
This material model is a plane stress linear orthotropic material model utilizing
three di�erent Young's moduli for both E1 and E2. The Young's moduli are
de�ned only for a particular strain region. Once an element exceeds the strain
region of a de�ned modulus, a new Young's modulus is assigned. The result is
a simple non-linear material model that correlated well with the experimental
data.

In summary, the inherent non-linear behavior of coated fabrics has been
widely documented. To model a complete in�atable structure at the micro level
with yarn interactions has proven to be too computationally expensive. Thus,
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PVC-coated polyester is typically modeled in the FE method as a plane stress
linear orthotropic material. While the linear orthotropic material model is
simple to implement, non-linear material models may more accurately describe
the material response. One such material model discussed was a tri-linear
orthotropic material model.

2.2 Bubble In�ation Tests

Bubble in�ation tests are a popular method for introducing an equal biaxial
load case, especially in cases where very large deformations may inhibit the
ability for a conventional biaxial test. The bubble in�ation tests have been
used to characterize polymers such as Ethylene Tetra Fluoro Ethylene (ETFE)
and even �our/water dough. A Bubble in�ation test is made by clamping a
material sample to a circular clamp. A medium is introduced on one side of
the material, applying a pressure to the material. The material on the inside
of the clamp is free to deform, creating a bubble shape from the pressure load.
Image tracking techniques, such as DIC, can be used to track the deformation
of the material. A simple overview of a sample bubble in�ation test setup
can be seen in Figure 2.1. Although the deformation of coated fabrics isn't
expected to be as much as other polymer foils, the bubble in�ation test still
introduces a 1:1 biaxial load case at the center point of the material sample.

Bubble in�ation tests are useful in obtaining the biaxial stress strain curve
for a highly deformable material. It is generally assumed that the bubble,
resulting from in�ation, is spherical in shape. Reuge et al. (2001) and Char-
alambides et al. (2002) used a single camera to measure the bubble height
while Galliot and Luchsinger (2011) used a two camera DIC system. Assum-
ing that the material is incompressible, it is possible to approximate the strain
with the bubble height and radius of the test �xture. Pressure vessel theory is
used to calculate the stress with the assumed spherical shape and the bubble
height. This results in a stress strain relationship for a 1:1 biaxial load case.

Galliot and Luchsinger (2011) performed unixial, biaxial, and bubble in�a-
tion tests on ETFE. Nearly identical stress strain relationships were developed
for each test. However, only the uniaxial and bubble test could be used to
evaluate the material failure. This was because the ETFE foils did not fail
in the biaxial test device, due to the physical limitation of the biaxial test
structure. Bubble in�ation tests are not physically limited to a strain range,
because bubble in�ation test �xtures have no moving components unlike a
conventional biaxial test device.
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Figure 2.1: Overview of a bubble in�ation test setup

2.3 Inverse Method

There are direct and inverse methods for obtaining material models. Uniaxial
and biaxial tensile tests are commonly used to characterize the mechanical
behavior of coated fabrics. With the direct method, a physical test is con-
ducted to determine the material's constitutive relationship. The resulting
experimental relationship is passed directly into the material model of an FE
analysis that replicates the testing conditions. Ideally, it is then shown that
the material model is capable of replicating the behavior of the physical test.

The inverse method is fundamentally di�erent from the direct method.
With the inverse method, an FE analysis is created replicating the conditions
of the physical test �rst. Optimization is then used to determine the best ma-
terial model parameters by minimizing the di�erence between the FE analysis
and the physical test results. While each method has advantages, the inverse
method may reduce the engineering time required to create material models
suitable for FE analysis. More importantly, the material can be characterized
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with a load state that is more complex than traditional uniaxial or biaxial test-
ing. This added complexity may be more representative of reality. Materials
such as technical woven textiles or coated fabrics violate continuum mechanics
in a macro sense as the material is not represented by a single continuum. Thus
the homogenization of the material into discrete elements for use in the FE
method may be a cumbersome task. The inverse method is capable of deter-
mining the best homogenized FE material model representative of a complex
load state.

Garbowski et al. (2011) used the inverse method to characterize paper by
performing biaxial tests on paper. A circular hole was cut in the center of the
biaxial test sample to increase the inhomogeneous response �eld. DIC was used
to capture the full �eld displacements of the test samples. The physical test
was reproduced in an FE analysis. The deformation of the cruciform specimen
is then compared to the nodes of the FE model. An elastic-plastic orthotropic
material model was thus determined with much success by optimizing the pa-
rameters of the material model, minimizing the di�erences between the FE
model and the deformations of the test specimen. In the end a software pack-
age was created suitable for determining the constitutive relationship of test
specimens that can be performed on a portable computer.

2.4 Optimization

The inverse method utilizes optimization to determine the best material model
parameters. Fundamentally, optimization is a tool used to determine the best
solution to a mathematically de�ned problem. The general form of an engineer-
ing optimization problem is arranged in Eq. 2.1. The goal of the optimization
is to minimize the objective function, represented by f(x). The design point x
consists of each variable xi that in�uences the objective function, constraints,
or both. The lower and upper bounds are denoted by xiL and xiU , for each
variable. The feasibility of an optimization problem can be de�ned mathemat-
ically by a set of constraints. The optimization is subject to the inequality
constraints gj(x) and the equality constraints hk(x).

minimize f(x), x = [x1, x2, · · · xi]T

subject to gj(x), i = 1, 2, · · · q
hk(x), j = 1, 2, · · · r

xiL ≤ xi ≤ xiU , k = 1, 2, · · · s

(2.1)

There are a number of di�erent optimization algorithms, however most
fall into one of two broad categories: gradient based optimization and non-
gradient based optimization. Gradient based optimization algorithms begin
from a single design point. Finite di�erence steps are typically performed for
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each variable to obtain a search direction. A line search is performed based on
the search direction to improve upon the previous design point. Once the best
objective function has been found in this search direction, a new set of �nite
di�erence steps are calculated on the newly found best design point. This
process is repeated until convergence is demonstrated.

As implied by the name, non-gradient based optimization methods do not
use gradient information to �nd the optimum design point. In general non-
gradient methods utilize a set of design points, while gradient methods begin
from a single design point. The inspiration behind many non-gradient opti-
mization algorithms has come from observations of nature. Popular algorithms
include the genetic algorithm, the particle swarm algorithm, and other evolu-
tionary based algorithms.

The best performing optimization algorithm is predominately unique for
each speci�c engineering problem. With the inverse method, an optimization
is performed with a FE analysis to determine a material model. Thus each
time the objective function is evaluated an FE analysis is performed. The
optimization algorithm should be chosen in a circumspect manner, because
the number of FE analyses performed dictates the computational intensity of
the method.

It is not the focus of this thesis to benchmark di�erent optimization algo-
rithms for one speci�c inverse problem, rather it is the focus to demonstrate
that the inverse method is capable of producing material models suitable for
the FE analysis of in�atable structures. Once the method has been demon-
strated to be successful, the inverse method may be tweaked for performance
characteristics. Gradient optimization was chosen as a reasonable method for
the initial investigation of the inverse method.

Snyman (2005) recommends the use of gradient over non-gradient optimiza-
tion methods based on his experience, stating that he believes non-gradient
methods are too computationally expensive to be viable. Snyman also states,
that through careful use of gradient based methods, it is possible to solve prob-
lems with multiple minima and numerical noise. For single objective gradient
based constrained optimization, Venter (2010) states that three algorithms are
commonly encountered for engineering purposes: the Sequential Linear Pro-
gramming (SLP) algorithm, the Sequential Quadratic Programming (SQP) al-
gorithm, and the Modi�ed Method of Feasible Directions (MMFD) algorithm.
All three algorithms were utilized in this thesis, however the MMFD algorithm
was found to consistently perform the best throughout this investigation.

Vanderplaats Research & Development Inc. (2001) Design Optimization
Tools (DOT) was the optimization library used in the work presented in this
thesis. DOT is a multi-purpose gradient based software library designed for
engineering applications. For the inverse method, a simple Python script in-
terfaces with DOT and the MSC Marc input �le. The material model variables
are fed into DOT as variables to optimize. The optimization goal is to min-
imize the error between the FE model bubble displacements and the known
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displacements. DOT was designed to be useful as an engineering optimizer,
so the algorithm attempts to stay in the feasible region as much as possible
during the one dimensional search.

2.5 MSC Marc

Non-linear FE analysis is used rather than linear FE analysis when the non-
linearity is important in the analysis of the structure. In many engineering
applications non-linear behavior may occur with the material, loading, or
boundary conditions. The non-linear FE analysis software used throughout
this thesis is MSC Marc. Marc is an implicit non-linear FE analysis solver,
which utilizes the Newton-Raphson method to solve non-linear FE analyses.
This section shows how Marc uses the Newton-Raphson method to solve non-
linear FE analyses, by deriving the governing equations.

The governing equation of a linear static FE analysis is seen in Eq. 2.2.
Where K is the sti�ness matrix, u is the nodal displacement vector, and r is
the nodal force vector.

Ku = r (2.2)

The linear equation is solved for the nodal displacements vector, as seen in
Eq. 2.3. It is important to mention that the sti�ness matrix is never inverted
in practice, rather a linear equation solver is used to determine the nodal
displacement vector. Representing this solver as an inverted matrix helps to
keep the notation concise.

K−1r = u (2.3)

With a non-linear FE analysis, both the sti�ness matrix and the nodal
force vector may be de�ned as functions of the incremental nodal displacement
vector, as seen in Eq. 2.4. For example, a non-linear strain dependent material
model can be represented as a sti�ness matrix that is a function of the nodal
displacement vector. A surface pressure load is an example of when the load
will be a function of the displacement vector, because the nodal load vector
becomes a function of the orientation of the structure.

K(un)
−1r(un) = un (2.4)

MSC Marc utilizes the Newton-Raphson method to solve for the nodal
displacement vector, as seen in Eq. 2.5. The entire load of the non-linear FE
analysis is split up into separate n increments. The initial nodal displacement
vector of that increment is then updated in i iterations until convergence is
demonstrated.

K(ui−1
n )−1r(ui−1

n ) = ui
n (2.5)
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Figure 2.2: Newton-Raphson method for a non-linear FE analysis

The Newton-Raphson method can be visualized in Figure 2.2, where an
arbitrary structure produces the non-linear load displacement curve. A load
of 2 is applied from the solution of increment 1, to the �rst iteration of in-
crement 2. The sti�ness matrix and load vectors are assembled utilizing the
nodal displacement vector from the solution of increment 1, and Eq. 2.5 is
solved for a new displacement vector u1. This solution is not correct because
the structure does not exert a force equal to, 2.0, the applied force. This re-
sulting di�erence is the FResidual residual force, which represents the amount
of force out of equilibrium. A new sti�ness matrix and load vector are assem-
bled with the previous found displacement vector of u1. The Eq. 2.5 is solved
again for a new displacement vector. A residual force can be seen at the end
of iteration 2, which suggest that the solution has not yet been found. The
process repeats until the convergence criteria is satis�ed.

The user can de�ne three types of convergence controls in Marc; residual
checking, displacement checking, and strain energy checking. Residual check-
ing minimizes the maximum nodal residual force and is normalized with respect
to the maximum nodal FReaction reaction force as expressed in Eq. 2.6. This
e�ectively minimizes the out of equilibrium force to a tolerance set by the user.
Displacement checking minimizes the maximum nodal DIteration displacement
of an iteration. This is divided by the maximum nodal DIncrement displacement
of the interment as seen in Eq. 2.7. It can be noted in Figure 2.2, that upon
converging the displacement of an iteration decreases, thus the solution occurs
when the iteration displacement is near zero. As presented, both the resid-
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ual and displacement checking are relative convergence criteria. Strain energy
checking is similar to displacement checking, but instead of displacements the
global strain energy is minimized. Marc allows for the combination of residual
checking and displacement checking, but not strain energy checking. It is as-
sumed that two convergence criteria is better than one, so all Marc non-linear
FE analyses in this thesis were performed utilizing residual and displacement
checking with a maximum tolerance of 0.001.

max(|FResidual|)
max(|FReaction|)

< Tolerance (2.6)

max(|DIteration|)
max(|DIncrement|)

< Tolerance (2.7)

Alternatively a modi�ed Newton-Raphson method can be used to solve
non-linear FE analyses in Marc. The modi�ed Newton-Raphson method is
similar to the Newton-Raphson method. However, the sti�ness matrix is not
recalculated every iteration with the modi�ed Newton-Raphson method, and
instead the initial sti�ness matrix of an increment is used for each iteration.
The result is that iterations can be performed rapidly as the sti�ness matrix
does not require assembly each iteration, however the approach requires much
more iterations. The modi�ed Newton-Rapshson method is e�ective for large
scale problems, nonetheless MSC Marc (2014) advises to avoid using the mod-
i�ed Newton-Raphson method with highly non-linear problems. In order for
a for a highly non-linear problem to converge, the reassembly of the sti�ness
matrix cannot be avoided. The FE models presented in this thesis all use a
realtively small number of elements, so all non-linear FE models in this thesis
were run with the full Newton-Raphson method.

It is important to mention that both the Newton-Raphson and the mod-
i�ed Newton-Raphson methods are not guaranteed to converge as stated by
Cook et al. (2002). However it is expected that with continued iteration both
the residual force and displacement of an iteration are to approach zero. Addi-
tionally it is recommended that small load steps are taken to get an accurate
representation of the non-linear load displacement relationship.

2.6 Digital Image Correlation

Digital Image Correlation (DIC) is a tool used to compute the displacement
values of a specimen from a sequence of images (LaVision GmbH, 2015). The
DIC system is used to capture images as a test specimen deforms. Each image
is split into subsets of N × N pixels. A unique contrast pattern is present in
each individual subset. The least squares method and iterative optimization is
used to �t linear transformations to the contrast pattern of subsequent images,
which will result in a subset deformation when the subset changes shape and
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location. This is repeated across the entire image to obtain the full �eld
displacement data. Specimens are often covered with a random speckle paint
pattern in an e�ort to increase the unique contrast in each subset. A sample
speckle pattern can be seen in Figure 2.3.

Figure 2.3: Random paint speckle pattern on PVC-coated polyester

The DIC system used in the work presented by this thesis is a product
of LaVision GmbH. The StrainMaster Portable DIC hardware was used with
two VC-Imager E-lite 5 megapixel cameras (LaVision GmbH, 2014b), and seen
in Figure 2.4. This two camera system is capable of full 3D stereoscopic dis-
placement measurements on the surface of a specimen. DaVis software by
LaVision GmbH (2014a) was used to calculate the displacement �elds from
images captured by the StrainMaster. The system is calibrated before captur-
ing a sequence of images to ensure sub-pixel accuracy.

The DIC system was used to measure the radius of a steel bearing ball,
to understand the three dimensional capabilities of the system. Information
on how the radius was determined from the DIC system is presented in Ap-
pendix A. The DIC determined radius of the ball was accurate, with an average
percent error of 0.42. This suggest that the DIC can accurately determine data
points on a surface of a curved object.

2.7 In�atable Beam Bending

Experimental testing on in�atable beams has been an important process in
the validation of many numerical models. Without validation, the ability of
the numerical model to replicate the physical behavior is largely unknown.
This section discusses the various experimental setups, numerical models, and
results of in�ated beam testing in literature.

A shear-moment mathematical model was used to predict the load dis-
placement behavior of cantilever beams by Main et al. (1994). Main et al.

performed physical testing on the in�atable cantilever beams to validate the
model. Four di�erent cylinders were made from rip-stop nylon with various
length/diameter ratios between 2.5 and 18. With a typical cantilever beam,
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Figure 2.4: Two camera StrainMaster Portable by LaVision GmbH

the base is kept rigid while a tip load is applied and the de�ection of the tip is
measured. For an in�atable cylindrical beam undergoing cantilever bending,
Main et al. discovered that a large portion of the tip load is carried by the
tensile strength of the material. This tensile load, along with changes in the
moment of inertia due to wrinkling, lead to a poor correlation of the experimen-
tal test data and the shear-moment model. Main et al. created a specialized
test �xture to minimize the tensile load by keeping the beam approximately
perpendicular to the tip load by rotating the base. Tests conducted utilizing
this �xture correlated better with the shear-moment model at the lower test
pressure of 34,475 Pa than the higher pressure of 68,950 Pa. The poor cor-
relation at higher pressures was believed to be contributed to the non-linear
response of the nylon material.

In�atable fabric panels were tested in a three point bending con�guration
by Wielgosz and Thomas (2002). The panels were constructed with two par-
allel coated woven fabrics connected by polyester yarns. When in�ated the
coated fabric on the panel would remain �at, resembling a rectangular cross
section when in�ated. The three point bending tests applied a lengthwise cen-
ter load to the in�ated panel, while the ends of the panel were supported.
Timoshenko's beam theory was used instead of Bernoulli's beam theory to de-
rive a mathematical model of the panel behavior, because shear stress cannot
be neglected for the in�atable structure. The theoretical and experimental
load displacement values showed strong correlation at all pressures, suggesting
that the derived mathematical model was capable of accurately predicting the
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load response of the beam for a variety of load conditions.
In�atable cylinders made of Vectran and polyethylene naphthalate were

investigated by Cavallaro et al. (2003). Four point bending was chosen over
a three point bending con�guration. A greater load state can be achieved
utilizing four point bending as opposed to three point bending, because a
lesser load occurs at each support reducing the e�ects of localized wrinkling
of the in�atable beam. The four point bending tests were conducted using a
displacement controlled Instron® machine. The load of was recorded with the
Instron's load cell, while the center displacement of the beam was recorded with
a displacement wire transducer. It was observed that the shear deformation,
which was largely in�uenced by the in�ation pressure of the beam, dominated
the sti�ness of the in�atable air beam. A non-linear FE model was constructed
of the cylinders utilizing shell elements with an orthotropic material model.
The results of the FE analysis matched poorly with experimental tests because
of the non-linearity of the material. The e�ective shear moduli decreased on
the compression side while increasing on the tension side of the in�atable beam.
It was concluded that the pressurized cylinder structures di�er fundamentally
from conventional structures of metal and �ber composites, largely because
the material did not behave as a continuum.

Three point bending tests were conducted on in�atable cylinders made from
coated textiles by Thomas and Wielgosz (2004). Simple supports were made
from PVC cylinders �t to the diameter of the in�atable tube, which were free
to rotate on a ball bearing. The displacement of the beam was measured using
a camera. The cylinder's cross section didn't remain orthogonal to the neutral
axis during bending, which demonstrated the in�uence of the material's shear
response while the in�atable beam experienced bending. Timoshenko's beam
theory was used to derive a mathematical model of the in�atable cylinder.
However, the theoretical model did not match as well with the experimental
results as matched by the previous work on in�atable panels by Wielgosz and
Thomas (2002). A new in�atable cylindrical beam FE was derived that utilized
a non-symmetric sti�ness matrix. The FE analysis with the purposed element
matched the experimental results better than the theoretical model based on
Timoshenko's beam theorey, however it produced a bending shape that was
more non-symmetric than the experimental data.

Three point and four point bending were performed on in�atable fabric
cylinders woven into a circular cross section by Davids et al. (2007). An
Instron® hydraulic actuator with nylon straps were used to apply and measure
the load on the beam. Wire transducers were used to measure the displacement
in the center of the beam as well as two additional locations along each half of
the beam. Utilizing virtual work principles and Timoshenko beam theory, a
new discrete in�atable cylindrical beam element was derived. The FE analses
utilizing this new element formulation matched well with the experimental re-
sults in both three and four point bending at di�erent pressures. While the
performance of the derived beam element was impressive, it can only be used
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in the analysis of in�atable fabric tubes.
Cantilever, three point, and four point bending, are all popular methods

of testing in�atable beams; the cantilever beam being the most di�cult to
test as the support and loads require a large amount of consideration. Both
optical tools and wire transducers have been used to measure the de�ections
of the beam with success. Traditional Bernoulli beam theory cannot be used
to model the load de�ection response of the in�atable beams, because the
theory ignores the material's shear response. It has been shown that the shear
stress of an in�atable beam is a signi�cant contribution to the sti�ness of
the beam. Timshenko beam theory has been used with mixed results to create
mathematical models of bending in�atable beams. Specialized in�atable beam
elements, such as the element derived by Davids et al. (2007), have been used to
model the bending of an in�atable beam with success. However these elements
are speci�c to a particular geometry, and cannot be used to directly model
other in�atable structures. Using shell elements to model the bending of an
in�atable cylinder was explained to be di�cult by Cavallaro et al. (2003). This
was due to the non-linear behavior of the in�atable beam, which originated
from the non-linear material properties. The bene�t of successfully modeling
the bending of in�atable cylinders with shell elements in the FE method, is
that shell elements can be used to model additional structures. Despite the
success of the specialized in�atable beam elements, the process used to derive
the element formulation is only applicable for beams.
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Chapter 3

Non-Linear Orthotropic Material

Model from Uniaxial Tests

Three uniaxial tests were conducted on PVC-coated polyester in the material
warp, �ll, and 45◦ bias directions. Utilizing Digital Image Correlation (DIC),
virtual strain gauges are used to determine the strain of the specimens. Finite
element (FE) models were constructed replicating the physical behavior of
the uniaxial tests. Optimization was used to obtain the material model that
matches the load deformation behavior of the virtual strain gauge. A non-
linear orthotropic material model was determined.

3.1 Experimental Tests

Uniaxial tests were performed following the ASTM D751 - 06 (2011) cut strip
test method on a MTS Criterion® 44. The MTS test system is capable of
pulling the clamp at a uniform speed of 1020 mm/min, which exceeds the
ASTM D751 testing speed of 300 mm/min. A MTS LPS.304 low pro�le shear
beam force transducer was mounted to the MTS load frame, which has a force
rating of 30 kN. The LPS.304 determines the uniaxial load with high �delity
as the transducer is rated with an accuracy class of 0.5 percent from 300 N to
30,000 N. This force transducer exceeds the ASTM D751 machine e�ciency
requirement by having an error less than one percent for its loading range. Test
specimens are prepared to be 25 mm in width and 175 mm in length. Clamps
30 mm wide are used to hold the specimens su�ciently �at and parallel during
the test. The distance between the clamps at the start of the test is 75 mm
as prescribed by the ASTM D751 standard. The uniaxial tests are performed
with DIC to measure the displacements on the specimens surface.

Uniaxial tests were performed in the warp, �ll, and 45◦ bias yarn directions
of the PVC-coated polyester. The 45◦ bias test has been used to provide in-
sight on the material's shear response. For each material yarn direction, �ve
uniaxial tests where performed. The resulting load and maximum DIC dis-

20
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placement value from all uniaxial tests are presented in Figure 3.1. A fourth
order polynomial was �t to the data points of each uniaxial test direction. The
close grouping of data points for a particular material direction suggests that
the tests produced a consistent load displacement curve. Each uniaxial speci-
men was pulled until the sample broke. While each test direction failed above
1000 N, the 45◦ bias yarn direction exhibited considerably larger displacements
than the warp or �ll direction.
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Figure 3.1: Fitted polynomials through the load displacement values for �ve tests
in each material direction

There is a lack of data points above 700 N in the �ll direction, despite
each uniaxial test failing above 1000 N. This is because the DIC failed to
correlated displacements on the specimen for a couple of the tests in the �ll
direction. When this happens the DIC losses a signi�cant portion of the data
points on the surface of the specimen. While the lack of displacements at a
high load value may appear to be problematic, the test data showed a strong
correlation before this point. Thus it is safe to assume that had the DIC been
able to capture displacements at a load above 700 N for each sample in the �ll
direction, the additional data points would be similar to the existing data set.

The maximum DIC displacement value is a poor measurement. The maxi-
mum DIC displacement value of a uniaxial test does not incorporate a correc-
tion if the material slips. For instance the maximum DIC value may be larger
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for a particular test in which the material slipped than in a test in which the
material did not slip. Material slip is evident in some of the images captured
by the DIC, as seen in Figure 3.2. Despite inconsistent material slip, the tests
shown in Figure 3.1 produce a similar load displacement relationship. A more
accurate displacement measurement is required, because the images from the
uniaxial tests indicated that the material slipped at the test grips.

Figure 3.2: Contrast DIC images of uniaxial specimen in the material �ll direction
with circles highlighting evidence of material slip in the deformed state

3.2 Virtual Strain Gauge

The DIC generates points on the surface of an uniaxial specimen in three
dimensions. A virtual strain gauge is created by tracking the displacement
between two points on the surface of the uniaxial specimen. The initial distance
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represents a length of a line. As the specimen deforms from the uniaxial
test, the length of the line increases. The virtual strain gauge provides a
displacement value that is relative to a point on the surface of the specimen,
while the maximum DIC displacement value would be relative to the initial
con�guration. Slip from the test grips does not interfere with the displacements
of the virtual strain gauge, because the displacement measurement is relative
to a point on the surface of the material and not the test system.

An initial and deformed uniaxial test of the material �ll direction can be
seen in Figure 3.3, with a virtual strain gauge plotted on the specimen's surface.
The blue patch is a correlation map in a mask on the surface of a uniaxial
specimen. The virtual strain gauge is represented by the green line which
tracks the displacement on the specimen's surface between the end points of
the line. The top point of the line can be seen moving down due to the material
slipping. The specimen is shown in the xy plane, but the displacement of the
virtual strain gauge is calculated using the full x, y, and z coordinates. It
can be noted that the specimen data points do not make a perfect rectangle
despite the uniaxial test samples being rectangular. The missing specimen
data points are the result of the DIC failing to �nd a correlation. Additional
data points may be lost on the specimen as the specimen deforms, because
areas on the specimen may not resemble the initial state while deforming.
Overall an accurate displacement value for the uniaxial tests that accounts for
material slip can be determined by the virtual strain gauge.
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Figure 3.3: Virtual strain gauge on the initial and deformed uniaxial specimen in
the material �ll direction where the blue is an overlay of the masked region on the
uniaxial sample

The DaVis software by LaVision GmbH (2014a) includes a virtual strain
gauge feature. In the graphical user interface of DaVis, a user may click on
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two points in an image captured by the DIC to create a virtual strain gauge.
However, it is very di�cult to ensure that the selected two points create a
line parallel to the specimen. A better implementation of the virtual strain
gauge would allow for the user to specify the coordinates of the points to
create a virtual strain gauge on the initial image. A Python script was created
speci�cally for creating virtual strain gauges on exported displacement �eld
data from DaVis. The script calculates the length between two points speci�ed
on the sample throughout the test. The Python script produced strain values
analogous to the DaVis software, with the added bene�t of being able to
explicitly control the strain gauge points. All strain gauge values presented
were obtained using this Python script.

Virtual strain gauges of similar length were placed approximately in the
center of the test specimens in the warp, �ll, and 45◦ bias direction. The
displacements of the strain gauges were calculated using a strain gauge of the
exact same length, for a given material direction. The load strain gauge dis-
placement relationships can be seen in Figure 3.4. A polynomial, represented
by the solid line, was �t to the test data in each material direction using the
least squares method. These polynomials were used to characterize the uniax-
ial non-linear orthotropic material model. It was assumed that the polynomials
were an accurate representation of the uniaxial tests, because the polynomials
go through the center of each data set.

Table 3.1: Virtual strain gauge values including: initial length li, �nal length lf ,
maximum engineering strain ε (mm/mm), and coe�cient of determination R2 of the
�tted polynomial

Direction li (mm) lf (mm) max ε R2

warp 20.022 23.329 0.165 0.998
�ll 22.780 28.721 0.261 0.959
45◦ bias 19.767 30.734 0.555 0.987

In order to characterize the uniaxial non-linear orthotropic material model,
the load virtual strain gauge data will need to be compared to FE models often.
It is easier for the FE models to compare the load virtual strain gauge dis-
placements when using a polynomial to describe the relationship, rather than
interpolating between the data points. This is one reason why a fourth order
polynomial was �tted to the load strain gauge displacement for each material
direction. The polynomial is represented by the sold lines in Figure 3.4. The
coe�cient of determination of the �tted polynomials, length details, and en-
gineering strain of the virtual strain gauges are all provided in Table 3.1. The
lowest R2 value of the fourth order polynomials �tted to the load strain gauge
displacement data was 0.959, indicating that each polynomial is an excellent
�t to the virtual strain gauge data. It is safe to use the polynomials instead of
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Figure 3.4: Load strain gauge displacement values for the uniaxial tests in the
Warp, Fill, and 45◦ bias material directions with �tted polynomial indicated by the
solid line

the load strain gauge displacement data points because of the superb �t of the
polynomial. Working with the polynomial is preferred over the data points,
because the polynomial can be evaluated anywhere in the displacement range,
so no interpolation is needed between displacement data points.

Polynomial �ts were chosen to have the lowest root mean square error and
highest coe�cient of determination. Fits with di�erent order polynomials were
attempted, and it was determined that the fourth order polynomials were the
best �t. It can be noted that the �ll and bias directions can be simpli�ed to
third order polynomials, with little change in the quality of �t. The polyno-
mials were forced through the orgin, however this wouldn't be required for the
later described inverse analysis. This is because it isn't expected that the nu-
merical models match the polynomials exactly, but rather that the polynomials
serve as a tool in the matching of the numerical models to the experimental
test results.

It was attempted to obtain Poisson's ratio by creating an additional strain
gauge perpendicular to the described strain gauge on the uniaxial warp spec-
imen, however the results were not successful. The Poisson's ratio found was
near to zero, which would indicate that the �ber directions were decoupled.
This decoupled behavior in the warp test is di�erent than the deformation

Stellenbosch University  https://scholar.sun.ac.za



26

CHAPTER 3. NON-LINEAR ORTHOTROPIC MATERIAL MODEL FROM

UNIAXIAL TESTS

experienced in the bias extension test. In addition, it was found that the
Poisson's ratio changes as the specimen deformed. While Poisson's ratio is
an interesting topic for future study, the investigation was not critical to this
work. Instead of obtaining Poisson's ratio from the tests, a Poisson's ratio
from literature was used.

3.3 Uniaxial Finite Element Models

Three non-linear FE models were created in MSC Marc to replicate the three
distinct uniaxial tests in the warp, �ll, and 45◦ bias material direction. Symme-
try is utilized to simplify the uniaxial FE models in the warp and �ll directions.
However, the uniaxial 45◦ bias test cannot use symmetry as the test produced
an unsymmetrical displacement �eld. A non-linear orthotropic material model
is used to replicate the non-linear behavior of the uniaxial tests. The material
model will be determined through optimization, by minimizing the load dis-
placement di�erence of the FE models and the virtual strain gauges from the
physical tests.

The uniaxial tests in the warp and �ll material directions can be modeled
with shell elements. In both material directions, the displacements of the uni-
axial specimens were symmetric about the long axis of the uniaxial specimen.
The symmetry greatly simplifes the FE model as any line parallel to the edge
of the test grips, in the initial con�guration, would remain parallel throughout
the test. Thus a representative FE model only needs to include the area of
the virtual strain gauge. The mesh used for the warp uniaxial test is seen
in Figure 3.5, while a similar mesh is used in the �ll direction. Both meshes
use 40 linear quad elements. The width of the mesh is one half the width
of the 25 mm wide specimen, because of symmetry. The warp mesh has the
material primary direction aligned with the y axis, while the �ll mesh has the
material secondary direction aligned with the y axis. For both the warp and
�ll models, the length of the mesh matches exactly with the initial length of
the virtual strain gauge in the corresponding material direction. Roller con-
straints are used on the top and symmetric line of the mesh. A displacement
in the y direction is applied to the nodes on the bottom edge of the mesh, such
that the �nal deformed mesh will have the length of the �nal deformed strain
gauge as referenced in Table 3.1. The load extracted from the FE models in
the warp and �ll direction will need to be doubled before comparing the FE
results to the physical tests, because the FE models only model half of the
uniaxial specimen's width.

The entire 45◦ bias uniaxial test needs to modeled in the FE software since
the test specimen was not symmetric. The geometry of the 45◦ bias uniaxial
test was modeled with 300 linear quad elements between the test grips. The
resulting mesh is 25 mm in width and 75 mm in length, which is the same size
as the prepared uniaxial specimen between the test grips. Appropriate care
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Figure 3.5: Symmetric FE mesh of the warp uniaxial test with boundary conditions

was used when generating the mesh, such that in the center of the mesh two
nodes match the initial length of the virtual strain gauge. The vitural strain
gauge location on the mesh can be seen by the two green dots in the center
of Figure 3.6. The displacements of the nodes representing the virtual strain
gauge on the FE model are exported by a simple script, which calculates the
overall displacement of the strain gauge on the FE model. The displacement
values of the virtual strain gauge of the FE model is compared directly with
the displacement of virtual strain gauge in the physical 45◦ bias tests. The
elements of the mesh are oriented such that the primary direction is 45◦ from
the y axis. The nodes on the top of the mesh are �xed to simulate the physical
clamping condition. A �xed displacement is applied to the nodes on the bottom
of the mesh, such that in the y direction the model will displace similar to that
of the lower jaw in the physical test while not allowing any displacement in
the x direction.

MSC Marc (2014) includes a material model, the NLELAST model de�-
nition, capable of creating a simpli�ed non-linear elastic orthotropic material
model. The non-linear orthotropic material model is capable of reproducing
the non-linear load displacement curves of the uniaxial tests. The Young's
moduli (E1 , E2), Poisson's ratio (ν12), and shear modulus (G12) can be de-
�ned as functions of the strain component in their respective direction. A
Poisson's ratio of 0.24 was used, which is similar to the Poisson's ratio used for
various PVC-coated polyesters by Galliot and Luchsinger (2009) in a standard
linear orthotropic model. To add complexity to the inverse bubble in�ation
test, which is discussed later, third order polynomials are chosen for each of the
moduli as seen in Eqs. 3.1 - 3.3. The stress output of such a model may be non-
sensible as the model may violate the constitutive relationships of traditional
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Figure 3.6: 45◦ bias uniaxial test FE mesh with boundary conditions and virtual
strain gauge indicated by the green dots in the center of the mesh

FE theory. However such material models may still be useful in the design
and analysis of structures, by accurately predicting the load displacement be-
havior. The best non-linear orthotropic material model will be determined by
matching the load displacement behavior of the virtual strain gauges of the
FE models to the physical uniaxial tests.

G12(γ12) = β0γ
3
12 + β1γ

2
12 + β2γ12 + β3 (3.1)

E2(ε2) = β4ε
3
2 + β5ε

2
2 + β6ε2 + β7 (3.2)

E1(ε1) = β8ε
3
1 + β9ε

2
1 + β10ε1 + β11 (3.3)

All three FE models use a constant time step, such that 100 increments
produces a maximum displacement analogous to the physical test. The resid-
ual force and relative displacement tolerance was set to 0.001. All shell ele-
ments have a constant thickness of 0.81 mm, representing the thickness of the
material. The β terms of the non-linear orthotropic material model will be
determined with optimization, such that the material model parameters in the
FE models match the load displacement behavior of the virtual strain gauges
seen in Figure 3.4.
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3.4 Optimization of FE Models

Optimization is used to determine the best non-linear orthotropic material
model by minimizing the di�erence between the physical uniaxial tests and the
FE models. The uniaxial FE models are considered simultaneously to compute
a single error value that describes the �t of the FE models to the virtual
strain gauge test results. Design Optimization Tools (DOT) in company with
a Python script is used to run the FE models and determine the optimum
material parameters.

Root mean square error (RMS) is used to determine the error between
the FE model and the physical tests. The polynomials �tted to the load
displacement virtual strain gauge data from the physical uniaxial tests are
represented by Pwarp, Pfill, and Pbias. At each of the 100 increments of the FE
model, the load extracted from the FE model is represented by Fwarp, Ffill,
and Fbias. The load from the polynomials is compared directly with the load
of the FE model at the 100 FE increments. Three RMS errors are calcuated
for each material direction, and can be seen in Eqs. 3.4 - 3.6.

ewarp =

√√√√√ 100∑
i=1

(Fwarp(i)− Pwarp(i))2

100
(3.4)

efill =

√√√√√ 100∑
i=1

(Ffill(i)− Pfill(i))2

100
(3.5)

ebias =

√√√√√ 100∑
i=1

(Fbias(i)− Pbias(i))2

100
(3.6)

The three RMS errors can be combined into a single error value euniaxial.
It is possible to create the single error value by simply adding up the RMS of
each material direction, as seen in Eq. 3.7. Each material direction terminates
at a load of the same order of magnitude, as seen in Figure 3.4, so there is no
need to normalize the RMS of each individual direction. Additionally there is
no weight to a particular material direction as the optimization goal is to �nd
the best overall material model. A euniaxial value of 0.0 represents a non-linear
orthotropic material model in which the uniaxial FE models match exactly
with the experimental uniaxial tests.

euniaxial = ewarp + efill + ebias (3.7)

The overall objective function of the optimization can be expressed by
minimizing the overall error of the FE models load displacement results for a
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particular material model. The ideal material model will match the uniaxial
virtual strain gauge load displacement results exactly. This is subjected to
two constraints, the �rst being that the moduli in the material model must
remain positive for the entire strain range because a negative moduli for a
positive strain is non-sensible. The second being that all of the FE analyses
are valid, in which case Marc outputs an exit code for each analysis of 3004.
The overall objective function can be seen in Eq. 3.8. The two constraints serve
as logical �ags for the constrained optimization. When a constraint is violated,
a value of 1 is fed into the algorithm, while a value of -1 indicates a satis�ed
constraint. This type of true-false boolean constraint may be problematic for
a gradient based optimization algorithm, however DOT deals with boolean
constraints well by backtracking when encountering a violated constraint in
the one dimensional search. It is important to mention that DOT's approach
works well, provided that the optimization is started from a feasible point.

minimize: euniaxial

such that: E1, E2, G12 > 0 and

All Marc Exit Codes = 3004

(3.8)

The β terms of Eqs. 3.1 - 3.3 are the variables the optimizer will use to
determine the best non-linear orthotropic material model, however what deter-
mines a reasonable starting point and de�nes the variable bounds is unknown.
An initial optimization was performed on β terms that began in the feasible
region to satisfy the boolean constraints. From this optimization, a mate-
rial model was created that matched well with the uniaxial test data. The
DOT parameters were used in their default con�guration, including gradient
step size, scaling, and convergence criteria. The Modi�ed Method of Feasible
Directions (MMFD) algorithm proved to be the most reliable gradient based
optimization algorithm from the DOT library for the inverse problems con-
sidered here. The optimization is run from multiple starting points to ensure
the best material model is found, and to avoid selecting a local minimum in
the design space as the best material model. The best material model can be
described mathematically as having the lowest objective function value.

3.5 Material Models

Material model parameters were determined through optimization, by mini-
mizing the di�erence of the virtual strain gauge load displacement curves and
the uniaxial FE models. The optimization did not �nd material model pa-
rameters that would lead to a perfect �t of the uniaxial strain gauge data.
However, a material model that resembles the strain gauge load displacement
behavior was found, with an objective value of 50.1. The optimization was
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not deemed too computational intensive, and multiple optimizations could be
performed in a day on a desktop PC.

The resulting non-linear orthotropic material model matched well with the
physical test data. The load displacement data from the FE models with
the determined material model can be seen in Figure 3.7 on top of the �tted
polynomials to the virtual strain gauge load displacement physical data. It
can be noted that the �t in the warp material direction is superior to the
other two directions. The material model struggled to create the low sti�ness
experienced by small strains in the �ll direction.
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Figure 3.7: Load displacement result of the non-linear orthotropic FE models
(dashed line) on top of the polynomial �tted to the virtual strain gauge data (solid
line)

A plot of the three moduli determined from the optimization can be seen
in Figure 3.8. The moduli are limited to the maximum strain ε value of the
physical uniaxial test. It can be seen that the magnitude and non-linearity of
E1 dominates the other moduli. Additionally it can be noted that the moduli
curves do not represent a third order polynomial. This suggest that the third
order polynomials may be simpli�ed. A lower order simpli�cation does not
guarantee better material �tments, as in Figure 3.7, so second order material
models were not explored since the existing �t was of acceptable quality. It is
important to mention that simplifying the polynomial order of the non-linear
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CHAPTER 3. NON-LINEAR ORTHOTROPIC MATERIAL MODEL FROM

UNIAXIAL TESTS

orthtropic material model parameters greatly reduces the computational cost
of determining the material model parameters. The resulting β values, of
Eqs. 3.1 - 3.3, that de�ne the material model can be seen in Table 3.2.
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Figure 3.8: Non-linear orthotropic material model determined from the simulta-
neous optimization of the three FE models, where each modulus is limited to the
failure strain

Stellenbosch University  https://scholar.sun.ac.za



3.5. MATERIAL MODELS 33

Table 3.2: Variables determined from the optimization of the uniaxial test cases
that de�ne the non-linear orthotropic material model of Eqs. 3.1 - 3.3

Solution

β0 −7.96599× 10−3

β1 7.49311× 10−1

β2 −1.50931× 10−1

β3 2.05148× 10−2

β4 −1.13743× 101

β5 1.07160× 101

β6 −6.17621× 10−1

β7 1.41287× 10−1

β8 −4.78030× 102

β9 2.11227× 102

β10 −2.02600× 101

β11 8.15340× 10−1
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Chapter 4

Inverse Bubble In�ation Method

Membrane structures designed with technical woven textiles, coated fabrics,
and various polymer membranes are often operated in their non-linear region,
thus it is anticipated that the material model should be able to replicate the
non-linear behavior of the material. An inverse bubble in�ation method may
provide an an improved method of homogenization for the material, while still
accounting for the complex load state of the material. However, a mechanism
for obtaining material models utilizing the inverse method with a bubble in-
�ation test has not yet been established. This chapter proposes the procedure
for calibrating a non-linear orthotropic material model from an inverse bub-
ble in�ation test. The results of a non-linear Finite Element (FE) analysis
of a bubble in�ation test are used instead of experimental data from a phys-
ical bubble test. The non-linear orthotropic material model is used as the
solution to the inverse problem. To demonstrate the capability of the inverse
bubble in�ation test, it is shown that the method can replicate the non-linear
orthotropic material model from the solution. This suggests that the inverse
bubble in�ation test can successfully determine a non-linear orthotropic mate-
rial model from a bubble in�ation test. The inverse bubble in�ation technique
is then ready to determine the non-linear orthotropic material models from
experimental bubble in�ation tests.

This chapter proposes the use of an inverse bubble in�ation test for obtain-
ing non-linear material models suitable for the FE method. The procedure for
obtaining the material model via the inverse bubble in�ation technique is out-
lined. The results of an FE analysis with a known material model are used as
a substitute for the experimental bubble in�ation test data. This is done to
demonstrate that the method is capable of �nding the correct material model
parameters. If the material model obtained from the inverse bubble procedure
is analogous to the known starting point, it can be concluded that the inverse
bubble in�ation technique is a valid method of obtaining non-linear material
models from physical test data.

34

Stellenbosch University  https://scholar.sun.ac.za



4.1. METHODOLOGY 35

4.1 Methodology

It is important to understand the e�ectiveness of the inverse bubble in�ation
method for an ideal test scenario before attempting the technique on physical
test data. A large number of factors may in�uence the ability of the method
to obtain an accurate material model, or otherwise prove the inverse method
impractical. To demonstrate the ability of the inverse bubble in�ation test to
reproduce the material models from a known solution with ideal conditions
helps to show that the technique is capable of producing accurate material
models. At this point the test method would be suitable for characterizing
material models from physical tests.

A non-linear FE model representing the physical response of the bubble
test was created using MSC Marc (2014). The model comprises of 800 linear
quad elements arranged in a circle that is 200 mm in diameter, as seen in
Figure 4.1. The appropriate mesh size was determined by an initial mesh
convergence study. Pin constraints are applied around the edge of the circle.
A linear pressure ramp of 300 kPa is applied to all of the elements, which
represents the load from the in�ated medium as a function of time. Upon
completion of the FE simulation, the nodal data is exported at pressures of
interest for the error calculation.
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Figure 4.1: Mesh used for the bubble in�ation FE model

MSC Marc (2014) includes a material model, the NLELAST model de�-
nition, capable of creating a simpli�ed non-linear elastic orthotropic material
model. The Young's moduli (E1 , E2), Poisson's ratio (ν12), and shear modulus
(G12) can be de�ned as functions of the strain component in their respective
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directions. To add complexity to the inverse bubble in�ation test, third or-
der polynomials are chosen for each of the moduli as seen in Eqs. 4.1 - 4.3.
Demonstrating the success of the inverse bubble in�ation test on this highly
non-linear material model suggest that the inverse method may be just as
successful with simpler material models.

G12(γ12) = β0γ
3
12 + β1γ

2
12 + β2γ12 + β3 (4.1)

E2(ε2) = β4ε
3
2 + β5ε

2
2 + β6ε2 + β7 (4.2)

E1(ε1) = β8ε
3
1 + β9ε

2
1 + β10ε1 + β11 (4.3)

A mesh convergence study determined that the 800 element mesh produced
acceptable displacement error while having a low computational cost in terms
of run time. The mesh size used is largely dependent upon the computational
resources available and desired accuracy. Since the optimizer will call the FE
model for each function evaluation, reducing the FE model run time greatly
reduces the optimization time. To avoid a mesh sensitive optimization result, it
is recommended to perform an initial mesh convergence study. The maximum
displacement value was within 0.05 percent for mesh sizes of 800 and 800,000
elements.

The sensitivity of the FE model to Poisson's ratio was investigated. The
FE bubble in�ation model was run with di�erent Poisson's ratios for the same
non-linear moduli (E1 , E2, & G12). The resulting maximum displacement
values were normalized to the set's average, and can be seen in Figure 4.2
for Poisson's ratios ranging from 0.05 to 0.45. It was observed that for the
same non-linear moduli, the Poisson's ratio varied the maximum displacement
value by plus or minus three percent. It was determined that the Poisson's
ratio was not a signi�cant contribution to the FE bubble in�ation model.
Thus the Poisson's ratio was held constant, and not included as a variable for
optimization.

Vanderplaats Research & Development Inc. (2001) Design Optimization
Tools (DOT) was the optimization library used in the inverse method. Gra-
dient based optimization proved to be a su�cient optimization method in
demonstrating the e�ectiveness of the inverse bubble test. The constrained
gradient optimization algorithm used was the Modi�ed Method of Feasible Di-
rections (MMFD). A simple Python script interfaces with DOT and the MSC
Marc input �le of the bubble model. The material model variables (β0 - β11
of Eqs. 4.1 - 4.3) are fed into DOT as variables to optimize. The optimiza-
tion goal is to minimize the error between the FE model bubble displacements
and the known displacements. This is subjected to two constraints. The �rst
being that the moduli must remain above zero for the strain range of the ma-
terial model. The second constraint ensures that the non-linear FE analysis
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Figure 4.2: Normalized maximum displacement value of FE bubble in�ation model
for various Poisson's ratios

produces a valid exit code, as some set of material model parameters may gen-
erate convergence problems. DOT was designed to be useful as an engineering
optimizer, so during a one dimensional search the algorithm attempts to stay
in the feasible region as much as possible.

4.2 Surface Fitting

The non-linear orthotropic material model chosen derives from physical tests
on PVC-coated polyester. The β terms in Eqs. 1-3 were �t to the unixail test
data in the primary, secondary, and 45◦ bias directions. A plot of the three
moduli limited to their strain component can be seen in Figure 4.3. The mag-
nitude and non-linearity of E1 dominates the other moduli. It can be noted
that it is possible to simplify the moduli to a lower order polynomial as the
curves do not represent a third order polynomial, but solving the variables of
the third order polynomial creates a more complex optimization problem and
better demonstrates the e�ectiveness of the inverse method. A Poisson's ratio
of 0.24 was used, which is similar to the Poisson's ratio used for various PVC-
coated polyesters by Galliot and Luchsinger (2009) in a standard orthotropic
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model. The FE bubble in�ation model is run with this material model, sim-
ulating a physical bubble in�ation test on PVC-coated polyester. Each curve
ends at their maximum strain value as experienced by the FE bubble model.
The result of the analysis will be used instead of experimental bubble test data
to demonstrate the e�ectiveness of the inverse bubble in�ation test.
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Figure 4.3: Non-linear orthotropic material model moduli as functions of strain

Three separate polynomials are �tted to the nodal displacement values at
seven unique pressure instances of the in�ating FE model. All of the nodes
of the mesh prior to in�ation lie in the xy plane. Thus each node will have a
unique displacement value as a function of it's original xy location. The least
squares method was used to �t a fourth order polynomial surface to the node
locations for the displacement values in the x, y, and z directions. It was found
that a fourth order polynomial, de�ned by 25 coe�cients and shown in Eq. 4.4,
to be the best �t. The �tted surfaces along with the nodal displacement values
can be seen in Figures 4.4 - 4.6.
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F (x, y) = C0x
4y4 + C1x

3y4 + C2x
2y4 + C3xy

4 + C4y
4+

C5x
4y3 + C6x

3y3 + C7x
2y3 + C8xy

3 + C9y
3+

C10x
4y2 + C11x

3y2 + C12x
2y2 + C13xy

2 + C14y
2+

C15x
4y + C16x

3y + C17x
2y + C18xy + C19y+

C20x
4 + C21x

3 + C22x
2 + C23x+ C24

(4.4)

x (mm)

100
50

0
50

100

y (
m

m
)

100

50

0

50

100

D
is

p
 x

 (
m

m
)

8

6

4

2

0

2

4

6

8

Figure 4.4: Nodal displacement x values on the �tted fourth order polynomial
surface at 300 kPa

The entire nodal displacements of the bubble in�ation FE model can be
represented by a series of polynomials, as a function of the original nodal xy
coordinates, at di�erent in�ation pressures. The polynomials are exceptional
�ts to the nodal x, y, and z displacements. The coe�cient of determination
for each polynomial was greater than 0.999 as seen in Table 4.1. A comparison
of the �tted displacement z values from the �tted polynomial and the known
displacement z values is seen in Figure 4.7. The �tted polynomial and known
displacement values are nearly identical.

Utilizing polynomials to represent the FE model adds simplicity to the
inverse method. Only the coe�cients of the polynomials need to be stored,
as opposed to the entire nodal displacement values. The error formulation
minimizes the di�erence in the full �eld nodal displacement values. The cor-
rect displacement values can be calculated by simply evaluating a polynomial.
These are then compared with the nodal displacements of a new FE run to
evaluate the error from a new material model.
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Figure 4.5: Nodal displacement y values on the �tted fourth order polynomial
surface at 300 kPa
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Figure 4.6: Nodal displacement z values on the �tted fourth order polynomial
surface at 300 kPa

A DIC setup using at least two cameras is capable of accurately providing
the full three dimensional displacement �eld on a physical bubble in�ation
test. It can be cumbersome setting up the DIC to calculate displacement
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Figure 4.7: Displacement z nodal values against the displacement z polynomial
�tted values at 300 kPa

Table 4.1: Coe�cient of determination for the polynomials used to de�ne the
bubble displacements

Pressure (kPa) R2 Disp x R2 Disp y R2 Disp z

22 0.99999 0.99971 0.99999
59 0.99999 0.99980 0.99999
97 0.99998 0.99994 0.99999
132 0.99994 0.99989 0.99999
186 0.99986 0.99970 0.99998
251 0.99967 0.99901 0.99994
300 0.99962 0.99836 0.99994

values at the exact node locations of the FE model. Instead of mapping the
DIC displacement values to speci�c node locations, a polynomial surface of
best �t is used. These polynomials can be arranged such that the axes align
with that of the FE mesh. Then the polynomial can be evaluated at the
FE model's node locations to compare the displacement results of the FE
model and the physical test. Additionally the polynomials represent a smooth
surface to match the full displacement �eld to the FE model. This smooth
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surface eliminates noise in test data that may result from the DIC calculated
displacement data. Thus the inverse bubble in�ation test can be utilized on
physical test data easily by swapping the current displacement polynomials
with displacement polynomials from a physical test.

The inverse bubble in�ation test was �rst attempted by only matching the
nodal z values of the FE models. It was then discovered that the physical shape
was non-unique to the material model. This was because very di�erent non-
linear material models could reproduce a nearly identical in�ated bubble shape.
Instead, by matching the full displacement �eld (x, y, and z displacement
components) it ensured that a unique solution was determined.

4.3 Optimization

Optimization is the mechanism used by the inverse method to determine mate-
rial model parameters. The FE analysis results for a particular set of material
model parameters is compared against the solution, utilizing a single objective
function. An objective function value of 0.0 indicates that the exact displace-
ment �eld was produced. This objective function is minimized until a local
minimum has been found. Multiple gradient optimizations are run simultane-
ously from random starting points to determine the global minimum, which
represents the material model determined by the inverse bubble in�ation test.

4.3.1 Objective Function

Root mean square (RMS) error is used to evaluate how well the FE results
of a particular material model matches with the known solution. The error
can be represented by a single value for each FE analysis. This single value is
minimized as the optimizer searches for the ideal material model.

At each of the seven pressures for which polynomials were �tted to the
bubble in�ation model (see Table 4.1), three RMS errors are calculated. One
for each nodal displacement direction. The �tted polynomials (which could
represent experimental bubble in�ation displacement data, but in this case
represent the known solution) are the terms Px, Py, and Pz. The results of
the FE model nodal displacements for a new material model are the terms
dx, dy, and dz. Both the polynomials and the displacements are functions of
pressure p, as there is a unique set of polynomials and displacements for each
of the seven pressures of interest. The root mean square errors for the three
directions are seen in Eqs. 4.5 - 4.7 as functions of pressure, where n represents
the total number of nodes.

ex(p) =

√√√√ n∑
i=1

(dxi
(p)− Pxi

(p))2

n
(4.5)
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ey(p) =

√√√√ n∑
i=1

(dyi(p)− Pyi(p))
2

n
(4.6)

ez(p) =

√√√√ n∑
i=1

(dzi(p)− Pzi(p))
2

n
(4.7)

In total, 21 di�erent root mean square error terms are calculated for the
three directions at seven di�erent pressures. A single error value which repre-
sents the overall �t between the FE bubble in�ation model and the solution
can be created by simply summing up all of the root mean square errors. How-
ever this introduces bias into the objective function. The FE bubble model is
in�ated in the z direction, thus it is anticipated that the nodal displacements
will always be larger in the z direction as opposed to the x and y displacements.
In an e�ort to reduce this bias, each root mean square error is normalized by
the maximum polynomial value at the corresponding pressure. The result is
a summation of equally weighted errors seen in Eq. 4.8. Thus e represents a
single value that describes the entire �t between the known solution and the
attempted material model.

e =
7∑

i=1

ex(i)

max(Px(i))
+

ey(i)

max(Py(i))
+

ez(i)

max(Pz(i))
(4.8)

Optimization is used to minimize e the overall error of the FE model's
results for a particular material model. The formulated objective function is
subjected to two constraints, the �rst being that the moduli in the material
model remain positive for their entire strain limit. The second being that the
FE analysis is valid, in which case Marc outputs an exit code of 3004. The two
constraints are true-false booleans, implemented in the same way as discussed
in Chapter 3. The objective function is summarized in Eq. 4.9.

minimize: e

such that: E1, E2, G12 > 0 and

Marc Exit Code = 3004

(4.9)

4.3.2 Procedure

Multiple optimizations are run to ensure that the best material model is found.
Fifty starting points are randomly generated between the upper and lower
bounds. Each starting point, is then run through the bubble in�ation FE
analysis to ensure the constraints are satis�ed. If a constraint is violated for
a particular starting point, a random starting point is generated between the
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bounds. This process is repeated until each starting point begins in the fea-
sible region. It is ensured that each starting point satis�es the constraints,
because the DOT optimizer cannot start with a violated true-false constraint.
The material model variables chosen as the solution and optimization bounds
are listed in Table 4.2. These bounds were chosen to be an order of magnitude
in size, with the solution variable appearing somewhere between the bounds.
If the solution is unknown, appropriate bounds may be chosen around the
result of a single initial optimization. Random starting points were found eas-
ier to generate than starting points selected from a latin hypercube sampling
that reside in the feasible region. Often a set of starting points, generated
from a latin hypercube sampling, included points that violated one or more
of the constraints. In order to overcome the violated constraints, a new latin
hypercube sampling was generated. The repeated formation of latin hyper-
cube starting points was found more computationally intensive than obtaining
starting points generated from random to reside in the feasible region. All 50
optimizations were run simultaneously with the MMFD algorithm. The mate-
rial model determined from the inverse method has the lowest found objective
function.

Table 4.2: Variables and bounds used for the non-linear orthotropic material model

Solution Lower Bound Upper Bound

β0 −7.96788× 10−3 −1.0× 10−2 0.0× 100

β1 7.10747× 10−1 0.0× 100 1.0× 100

β2 −1.56912× 10−1 −3.0× 10−1 0.0× 100

β3 2.00439× 10−2 7.0× 10−3 7.0× 10−2

β4 −1.06241× 101 −1.0× 103 1.0× 102

β5 1.37830× 101 −1.0× 101 1.0× 102

β6 −9.31830× 10−1 −1.0× 101 1.0× 100

β7 1.39437× 10−1 5.0× 10−2 5.0× 10−1

β8 −4.79622× 102 −1.0× 103 0.0× 100

β9 2.12650× 102 0.0× 100 7.0× 102

β10 −2.02028× 101 −7.0× 101 0.0× 100

β11 8.06350× 10−1 2.5× 10−1 1.5× 100

The DOT parameters are utilized in their default con�guration. The overall
optimization process is well suited for parallel computing as the 12 variable
gradient search may be performed at the same time. In addition multiple cores
can be used in the FE bubble in�ation analysis.
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4.4 Results

All 50 optimizations were performed in parallel. The optimum determined
from each starting point can be seen in Figure 4.8, sorted from the worst
objective value found to the best. The result of each optimization represents a
local minimum that was found in the design space. It is important to note that
no two optimizations found the exact same optimum material model. More
than half of the optimizations resulted in an objective value less than 0.5,
in which an objective of zero represents a material model that produces the
exact same displacement �eld as the solution. These low objective functions
suggest that resulting material models produce nodal displacements similar to
the solution. However, the large number of local minima suggests that the
problem is not well posed.
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Figure 4.8: Optima sorted from worst to best of optimization results from 50
random starting points

The material models determined through the optimization are similar to
the known solution. The solution is the material model that was utilized in
generating the polynomial displacement surfaces. The material models result-
ing from the top 10 percent of optimizations, alongside the solution material
model are shown in Figure 4.9. The small variance between moduli curves
leads to even smaller deviations in the full displacement �eld of the FE model.
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Figure 4.9: Five best material models resulting from the optimization of 50 random
starting points plotted alongside known solution

The best material model parameters produce a displacement �eld that is
nearly identical to the known solution. Two-dimensional plots of the node
locations cut through the y and x axes, as the material is in�ated, are shown
in Figures 4.10 & 4.11. The node locations resulting from the 10 percent
best found material models are plotted alongside the known solution. At the
seven pressures, the node locations are analogous among the di�erent material
models. It can be further noted that the subtle variance in the best material
models (seen in Figure 4.9) is even less noticeable in the cut through plots of
the FE bubble in�ation models.

The inverse bubble in�ation test was demonstrated by reproducing a highly
non-linear material model of a known solution. However, obtaining the exact
non-linear material model of the bubble in�ation test posses to be a challenging
optimization problem. This can be seen by the large number of local minimum
discovered while not �nding an objective function of zero.
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Figure 4.10: Node locations cut through the y axis from the FE bubble in�ation
models of the �ve best material models plotted alongside the known solution

100 50 0 50 100

y (mm)

0

5

10

15

20

25

30

35

40

z 
(m

m
)

300 kPa

251 kPa

186 kPa

132 kPa

97 kPa

59 kPa

22 kPa

Figure 4.11: Node locations cut through the x axis from the FE bubble in�ation
models of the �ve best material models plotted alongside the known solution
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Chapter 5

Inverse Bubble Tests

This chapter describes the bubble in�ation test setup. Multiple bubble in�a-
tion tests were performed on PVC-coated polyester, however only four bubble
in�ation tests were processed with inverse bubble analysis. A unique non-linear
orthotropic material model was determined from each of the four bubble in�a-
tion tests. The non-linear orthotropic material models from the inverse bubble
analysis and uniaxial tests were compared directly. To better understand how
the di�erent material models a�ect the load displacement behavior of a struc-
ture, �nite element (FE) models of the uniaxial test were run using the inverse
bubble in�ation material models. The results of these uniaxial FE models are
compared directly to the uniaxial test. It was shown that inverse bubble in�a-
tion material models produced load displacement behavior that did not match
the uniaxial tests.

5.1 Bubble In�ation Test

The bubble in�ation test �xture is seen in Figure 5.1. The �xture consists of
two aluminum parts. The diameter of the circular hole is 200 mm. Initially 16
M6 bolts were used to secure the top plate to the base of the �xture. However,
it was found that the M6 bolts did not provide a su�cient clamping force to
secure the PVC-coated polyester. Tests where the PVC-coated polyester slips
during the bubble in�ation test are invalid, because it is di�cult to account
for the slip in the boundary conditions of the numerical model used in the
inverse analysis. The test �xture was reworked to allow for 16 M10 bolts. The
M10 bolts produced better bubble in�ation tests, as the PVC-coated polyester
slipped less with the M10 bolts than the M6 bolts. The M10 bolts were torqued
between 15 and 20 N m for testing.

There are two push-in �ttings on the base of the bubble in�ation �xture.
The purpose of one �tting is to supply the pressurized compressed air to the
bubble test, while the other �tting is used to monitor the pressure. Additional
information about the Festo SPTE-P10R-S4-V-2.5K pressure transmitter used

48
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5.1. BUBBLE INFLATION TEST 49

Figure 5.1: Top plate resting on the base of the aluminum bubble in�ation test
�xture

in the bubble in�ation tests can be seen in Appendix B. For a bubble test, the
pressure is manually increased by adjusting a throttle valve to increase the
�ow rate.

Bubble in�ation tests were recorded using the StrainMaster Digital Image
Correlation (DIC) hardware and the DaVis software. The test images and
pressures are synchronously recorded, such that the pressure values become
embedded in the images. The cameras were positioned directly above the
bubble test �xture, such that the entire sample was visible by both cameras.
The two cameras were placed as far apart as possible on the StrainMaster,
however the angle between the cameras and the center of the bubble test was
less than 90◦.

Multiple bubble in�ation tests where performed with similar camera se-
tups. However, only four bubble in�ation tests were processed with the DaVis
software. Tests which the material slipped from the test �xture were discarded.
The four bubble in�ation tests processed did not slip. The maximum strain
values from the bubble tests are presented in Table 5.1. It is noted that the
maximum strain in the �ll direction is higher than the strain in the warp di-
rection, which agrees with the uniaxial tests which showed that the material
was sti�er in the warp direction. The sti�er material direction is expected to
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50 CHAPTER 5. INVERSE BUBBLE TESTS

deform less, therefore the warp direction experiences less material strain.
The DIC calculated strain values overlaid on the bubble test �xture for

the �nal image of bubble in�ation test 3 are presented in Figures 5.2 - 5.4.
In general the strain �elds exhibit a smooth transition from the data points,
however there are a few areas on the surface which experience an unusually
high strain value. These high values are believed to result from numerical
noise. The strain values of Table 5.1 were chosen by looking at similar strain
overlays for the di�erent bubble tests. The maximum strain value was chosen
utilizing engineering judgment as opposed to picking the maximum strain value
based on the image, because the presence of a high strain value in a small area
poorly represents the maximum strain value experienced by the test. The
maximum strain values are important, because the material model cannot be
characterized beyond the maximum strain.

Table 5.1: Maximum engineering strain values (mm/mm) of the bubble tests in
the warp (ε1), �ll (ε2), and shear (γ12) material directions

Test 1 Test 2 Test 3 Test 4

ε1 0.12 0.16 0.13 0.19
ε2 0.14 0.21 0.15 0.24
γ12 0.04 0.07 0.07 0.08

5.2 Inverse Analysis

The four bubble in�ation tests were in�ated to di�erent pressures and at di�er-
ent rates, because the pressure was controlled manually with a throttle valve.
A unique non-linear orthotropic material model was determined for each bub-
ble in�ation test using the process demonstrated in Chapter 4. Despite the
di�erent pressures chosen for the inverse analysis and the di�erent in�ation
rates of the bubble tests, all bubble in�ation tests produced similar non-linear
orthotropic material models.

The DIC bubble in�ation results are compared to the numerical model at
seven unique pressures, which is the same as the method used in Chapter 4.
The pressures used for each test are presented in Table 5.2. The set of pressures
were chosen based on the pressures of the recorded DIC images, of which the
pressures were approximately equally spaced. It was not possible to obtain
seven pressure increments that were exactly equal in spacing from the captured
DIC data.

For each bubble in�ation test, the least squares method was used to �t
fourth order polynomial surfaces to the DIC displacement values in the x, y,
and z directions. Thus for each unique pressure in Table 5.2, there are 3 unique
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Figure 5.2: Maximum strain values in the warp direction (ε1) of bubble in�ation
test 3 overlaid on the DIC image

Table 5.2: The seven unique pressures (kPa) used for the inverse analysis of the
recorded bubble tests

Test 1 Test 2 Test 3 Test 4

22 102 54 85
59 180 103 171
97 303 143 252
132 400 188 331
186 463 234 420
251 534 281 495
300 560 328 580
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Figure 5.3: Maximum strain values in the �ll direction (ε2) of bubble in�ation test
3 overlaid on the DIC image

polynomial surfaces. The coe�cient of determination for �tted displacement
polynomials of bubble in�ation test 4 are seen in Table 5.3. Test 4 is presented
because it had the worst coe�cients of determination values. Despite having
the worst �ts of the four bubble tests, the lowest coe�cient of determination
was 0.923 which still suggests an acceptable �t. A comparison of the �tted
displacement z values from the �tted polynomial and the DIC displacement
z values of test 3 is presented in Figure 5.5. The quality of the �tted fourth
order polynomials are good, however the polynomials are not perfect �ts and
do not match the DIC displacement values exactly.

Fifty inverse analysis optimzations were performed for each bubble test,
using random starting points between the bounds of Table 4.2. Many opti-
mization runs resulted in variable β3 hitting the upper boundary, so the upper
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Figure 5.4: Maximum strain values in the shear direction (γ12) of bubble in�ation
test 3 overlaid on the DIC image

Table 5.3: Coe�cient of determination for the polynomials used to de�ne the DIC
displacements of bubble in�ation test 4

Pressure (kPa) R2 Disp x R2 Disp y R2 Disp z

85 0.923 0.962 0.976
171 0.976 0.989 0.990
252 0.987 0.994 0.993
331 0.991 0.996 0.995
420 0.993 0.996 0.996
495 0.994 0.996 0.996
580 0.995 0.997 0.997
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Figure 5.5: Displacement z nodal values against the displacement z polynomial
�tted values at 328 kPa of bubble in�ation test 3

bound was increased and the optimization run again. The optimum deter-
mined from each optimization can be seen in Fig. 5.6, sorted from the worst
objective value found to the best. The optima represent the local minima in
the objective function found by the optimization. It can be noted that the
design space appears to be fairly �at, meaning that the local minima have a
similar objective function value near the best found objective function. The
objective functions are higher for bubble test 2 and 4, which were in�ated to a
higher pressure than bubble test 1 and 3. The non-linear orthotropic material
model from each bubble test was determined to be the best found objective
function from the set of 50 optimizations. It is important to mention that
the best objective function from each of the batches of optimizations were
lower than the objective functions of the uniaxial material models, however
this wasn't true for all 50 optimizations in a batch.
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Figure 5.6: Optima sorted from worst to best objective function of optimization
results from 50 random starting points for the four bubble in�ation tests

5.3 Resulting Non-linear Orthotropic Material

Model Comparison

The variables de�ning the non-linear orthotropic material models determined
from the inverse bubble in�ation analyses are presented in Table 5.4. It can be
clearly noted that each bubble test resulted in a di�erent material model since
each test produced di�erent β variables. This section will compare the moduli
from the non-linear orthotropic material models resulting from the uniaxial
and the inverse bubble in�ation analyses.

The non-linear orthotropic material models' E1 component, determined
from the uniaxial and inverse bubble tests, is presented in Figure 5.7. Each
curve is limited to the maximum strain value ε1 experienced by the test. While
each of the bubble tests produced an E1 value that is of the same order of
magnitude as the uniaxial value, the bubble test materials do not match the
uniaxial E1 component. In general, the bubble material models over or under
predict the magnitude of the uniaxial E1 at points throughout the strain range.

The non-linear orthotropic material models' E2 competent, determined
from the uniaxial and inverse bubble tests, is presented in Figure 5.8. Each
curve is limited to the maximum strain value ε2 experienced by the test. As
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Table 5.4: Variables of the non-linear orthotropic material models determined from
the inverse analysis on the four bubble tests

Test 1 Test 2 Test 3 Test 4

β0 −1.28170× 10−3 −4.42858× 10−3 −1.09230× 10−3 −2.97973× 10−3

β1 9.49079× 10−1 9.87096× 10−1 8.24376× 10−1 3.67627× 10−1

β2 −4.48869× 10−2 −2.05457× 10−1 −1.73231× 10−1 −1.01234× 10−1

β3 8.04287× 10−2 9.33764× 10−2 1.22820× 10−1 8.26297× 10−2

β4 9.70652× 101 6.73425× 101 9.99878× 101 8.17789× 101

β5 1.23017× 101 1.46374× 101 −2.19352× 100 1.56849× 101

β6 −2.75939× 100 −3.42911× 100 −2.44582× 100 −4.03842× 100

β7 1.18880× 10−1 1.46766× 10−1 1.89481× 10−1 1.81033× 10−1

β8 −1.59163× 102 −3.81685× 102 −3.65789× 102 −2.89436× 102

β9 3.81894× 102 1.32145× 102 3.07545× 102 9.75725× 101

β10 −4.04413× 101 −1.26632× 101 −3.34450× 101 −9.87010× 100

β11 1.17116× 100 7.42916× 10−1 9.89845× 10−1 5.63206× 10−1
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Figure 5.7: Non-linear orthtropic E1 determined from the uniaxial and inverse
bubble in�ation tests limited to the maximum strain value

was the case with the E1 modulus, the bubble tests generally over and under
predict the magnitude of the uniaxial E2 at di�erent strain values. It was
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observed that there is much less variance between the bubble test E2 moduli
than the previously discussed E1 moduli. This suggests that the inverse bub-
ble in�ation method was producing similar E2 functions, while the E2 curves
from the bubble tests are noticeably di�erent than the curve from the uniaxial
test.
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Figure 5.8: Non-linear orthtropic E2 determined from the uniaxial and inverse
bubble in�ation tests limited to the maximum strain value

The non-linear orthotropic material models' G12 competent, determined
from the uniaxial and inverse bubble tests, is presented in Figure 5.9. Each
curve is limited to the maximum strain value γ12 experienced by the test. The
shear strain values experience by the bubble test are signi�cantly smaller than
the failure shear strain of the uniaxial test. The bubble tests produced similar
G12 curves, however these curves are severely sti�er for the low bubble test
strains than the G12 curve from the uniaxial tests. The G12 values from the
bubble test are almost an order of magnitude larger than the uniaxial values for
the same strain range. However, the bubble test G12 values produced moduli
that are represented by a strain range between 0.4 and 0.5 of the uniaxial test,
despite the maximum shear strain of the bubble tests only being 0.08.
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Figure 5.9: Non-linear orthtropic G12 determined from the uniaxial and inverse
bubble in�ation tests limited to the maximum strain value

5.4 Uniaxial Tests and Material Model

Comparison

The non-linear orthotropic material models determined from the inverse bubble
in�ation tests were used with the non-linear FE models of Chapter 3. The FE
models were previously used to determine the non-linear orthtropic material
model from the uniaxial tests. There is one FE model for each of the three
distinct uniaxial tests in the warp, �ll, and 45◦ bias material direction. The FE
models are run with the inverse bubble material models to compare the inverse
bubble in�ation tests directly to the uniaxial material response. Additionaly
the uniaxial FE models help to evaluate how the di�erent modlui determined
from the bubble tests a�ect a load displacement relationship.

The load displacement results of the FE models in the warp direction are
plotted alongside the uniaxial test, used to create the uniaxial material model,
in Figure 5.10. At load displacement values, the bubble material models match
well with the uniaxial test, however for larger displacements the load between
the uniaxial test and the FE model may vary by as much as 200 N. There was
no bubble material model that matched with the warp uniaxial test exactly.

The load displacement results of the FE models in the �ll direction are
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Figure 5.10: Warp uniaxial test and the results of the uniaxial FE models utilizing
the bubble in�ation material models

plotted in Figure 5.11 alongside the uniaxial test used to create the uniaxial
material model. Each one of the bubble material models initially over predict
the sti�ness of the uniaxial test, but then severely under predict the sti�ness.
It can be seen that the bubble material models produce a large area of de-
formation without signi�cant load, which is vastly di�erent than the uniaxial
test. This deformation without load may cause numerical instability, and cre-
ate singular sti�ness matrices. Overall the bubble material models capture the
material response better in the warp material direction than the �ll direction.

The load displacement curves resulting from the FE models in the 45◦ bias
direction are plotted in Figure 5.12 alongside the uniaxial test used to create
the uniaxial material model. The bubble material models were limited to the
maximum strain of the bubble in�ation tests. This strain limit on the bubble
material models is the reason why the load displacement curves of the bubble
material models in the 45◦ bias direction are extremely short. The shear
modulus of the bubble material models is signi�cantly larger at low strains
than the uniaxial material model. Having a sti�er shear modulus, produces
a signi�cantly sti�er 45◦ bias load displacement curve for the bubble material
models, than the 45◦ bias uniaxial test.
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Figure 5.11: Fill uniaxial test and the results of the uniaxial FE models utilizing
the bubble in�ation material models
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Figure 5.12: 45◦ bias uniaxial test and the results of the uniaxial FE models
utilizing the bubble in�ation material models
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Chapter 6

In�atable Beam Bending

In�atable cylinders were manufactured from PVC-coated polyester. The in-
�atable cylinders were tested in a three point bending con�guration. Finite
element (FE) models were created to replicate the in�ation, and three point
bending of the cylinders. The FE models were run with the inverse bubble
in�ation and uniaxial material models. The load displacement results from
the three point bending tests are presented along with the results of the FE
models.

6.1 PVC-Coated Polyester In�atable Cylinders

Three in�atable cylinders were manufactured by Ceasar In�atables. The in-
�atables cylinders, pictured in Figure 6.1, are made from the same PVC-coated
polyester tested in the uniaxial and bubble in�ation tests. The cylinders are
all three meters in length, with varying diameter of 150 mm, 200 mm, and 300
mm. The cylinders were chosen to have a length to diameter ratio greater than
10, such that the cylinders may be considered as slender beams by someone in
the future.

Each PVC-coated cylinders was manufactured from a �at sheet of PVC-
coated polyester. The PVC-coated polyester was bonded using an adhesive,
creating a seam down the length of the cylinder. The seam has three layers of
PVC-coated polyester, while the rest of the cylinder only has one layer. The
end caps of the cylinder are also made from PVC-coated polyester, and secured
to the cylinder using the same adhesive. A valve was bonded to one of the end
caps. The valve and seam can be seen for one of the cylinders in Figure 6.2.

6.2 Three Point Bending Test Method

Three point bending was chosen to test the sti�ness of the in�atable cylinders,
because of the test's simplicity. A three point bending test only requires two
supports. A load is applied between the two supports, such that the beam

62
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Figure 6.1: Three PVC-coated polyester cylinders with diameters of 150 mm, 200
mm, 250 mm

bends symmetrically about the applied load. The load, de�ection of the cylin-
der, and internal pressure are recorded. The sti�ness of the in�atable cylinder
depends on the in�ation pressure. An in�atable cylinders can be referred to as
an in�atable beam for the three point bending tests. FE models will be created
of the bending in�atable beams, and used to validate the generated material
models. Ideally it will be shown that, either the uniaxial, or the inverse bub-
ble in�ation material models better predict the load de�ection behavior of the
in�atable beams.

The 3-Point bending test consists of two end supports mounted to the
�oor in the structures laboratory. A polyester strap, rated for 2.7 tons, will
be utilized to apply a load in the center of the in�atable beam. The strap
runs through the �oor, beneath the structures laboratory where weights will
be hung from the strap. Weights will be applied in 5 kg increments until
the in�atable cylinder buckles. There is a total of 80 kg of mass available
in 5 kg increments to load the in�atable cylinder. The displacement of the
bending beams was measured with an ASM WS12-2000-10V-L10 draw wire
displacement sensor. Demonstration of the accuracy of the sensor can be seen
in Appendix C. The draw wire was secured to the polyester tow strap. The
sensor was positioned above the center of the in�atable cylinder. The same
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Figure 6.2: In�atable cylinder valve on the end cap and seam running down the
length of the cylinder

pressure transducer used in the bubble in�ation tests (the Festo SPTE-P10R-
S4-V-2.5K of which additional information can be found in Appendix B) was
used to measure the internal pressure of the in�atable cylinders. Both the
displacement and the pressure were recorded with an HBM Spider8 bridge
ampli�er.

It is important that the boundary conditions of the three point bending
test can be replicated with the FE method in order to accurately model the
bending tests. Rigid supports can be simply modeled as rigid bodies with
contact in the FE method. However, the interaction between the cylinder and
the polyester tow strap would be di�cult to reproduce in the FE method.
Since modeling of rigid bodies with contact iterations is relativity simple, it
was decided to place a rigid collar around the center of the in�atable cylinder.
The load could be applied on the collar, which distributes the load onto the
bending beam. Thus the load of the FE model can be applied by displacing
a rigid collar around the center of the in�atable beam. The load information
was extracted from the contact between the rigid body and the nodes of the
cylinder. A cylindrical collar with an inner diameter of 240 mm and length of
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145 mm was used for the 150 mm and 200 mm diameters cylinder. While a
cylindrical collar with an inner diameter of 295 mm and length of 147 mm was
used on the 250 mm cylinder.

An in�atable beam bending in the test setup is pictured in Figure 6.3. The
collar in the center of the beam is seen in blue, while directly above the collar is
the mounted draw wire displacement sensor. The two end supports used have
an outer diameter of 100 mm. The dimensions of the test setup is presented
in Figure 6.4. Each cylinder was tested such that the seam running down the
length of the cylinder was placed on the two end supports.

Figure 6.3: 150 mm in�atable cylinder bending in the test setup

Figure 6.4: Dimensions in mm of three point bending test setup

The three in�atable cylinders were tested, each at three di�erent pressures
making up 9 test cases in total. Each test case was repeated three times to en-
sure quality measurements were recorded. After each test, the cylinders were
lifted from the supports while the collar and polyester strap were repositioned.
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Diameter (mm) Test 1 (bar) Test 2 (bar) Test 3 (bar)

150 0.90 1.10 1.40
200 0.60 0.80 1.00
250 0.50 0.65 0.85

Table 6.1: This table shows the various diameters of in�atable cylinders along with
the operating pressures used for the three point bending tests

It was necessary to reposition the beams after the test, as the beams moved
during testing. Additionally the variance between the three tests, for the same
load and pressure, provides information about the error in the testing envi-
ronment. The pressures, of which the cylinders were in�ated to, are seen in
Table 6.1. Preliminary FE models utilizing the uniaxial material model were
constructed to approximate appropriate testing pressures. The testing pres-
sures where chosen such that the cylinders will have similar maximum strains
of 0.06, 0.08, and 0.10 when the FE models were in�ated. The expected ma-
terial failure occurs around a strain of 0.24, thus the in�atable cylinders were
not expected to burst during in�ation. The material strain while testing is a
combination of the bending sti�ness and the internal pressure. While addi-
tional strain is expected to develop from the bending load case, the majority
of the total strain was expected to come from the internal pressure.

6.3 Three Point Bending Test Results

The load displacement results of the three point bending beams can be seen
in Figures 6.5 - 6.7. The displacement values were recorded when the beams
approached a static state. The variance between the load displacement curves
for the bending tests at the same pressure represents the error in the test setup.
The beams were placed such that the load was applied in the approximate
center of the beam. After each test the beam, draw wire, polyester strap, and
collar were repositioned. This repositioning may account for some of the error.
In addition it is impossible to in�ate the cylinders to the exact same pressure,
so a small amount of error may come from the cylinders being at a slightly
di�erent in�ation pressures. With all these error factors stated, the variance
in tests for the same pressure is small, as tests of the same pressure produced
similar load displacement curves.

The sti�ness of the in�atable beams depends upon geometry and pressure.
The larger the diameter of the in�atable cylinder, the sti�er the cylinder was in
three point bending. For all beam tests, the internal pressure of the in�atable
cylinder was a signi�cant contribution to the bending sti�ness. The beams
were sti�er in three point bending with higher internal pressures. For a given
displacement, the load may change by as much as 30 percent from the low to
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Figure 6.5: Center load displacement of the three point bending test on the 150 mm
diameter cylinder for three di�erent in�ated pressures

high tested pressures.

The internal pressure did not appear to a�ect the sti�ness of the 150 mm
diameter cylinder as much as the other two cylinders. However it is notice-
able that the buckling load increased with higher pressures, as the 150 mm
beam had a higher buckling load at higher pressures. The load of which the
150 mm beam buckled at 140 kPa is almost double the buckling load at 90 kPa.
The 200 mm beam at 60 kPa was the only other tested beam con�guration
to buckle, as all other beam con�gurations were able to hold the maximum
testing weight. A buckled 150 mm beam in the testing con�guration is seen
in Figure 6.8.

It was surprising to �nd that the in�atable cylinders produced a linear
load displacement curve when tested in three point bending. This is despite
the non-linear characteristics of the PVC-coated polyester. However the linear
results should have been expected as with the literature discussed in Chapter 2,
both mathematical models and beam FE models have successfully predicted
the load de�ection behavior of in�atable cylinders without the use of non-linear
material models.
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Figure 6.6: Center load displacement of the three point bending test on the 200 mm
diameter cylinder for three di�erent in�ated pressures

6.4 In�atable Beam Bending FE Models

The in�ation and three point bending of the in�atable cylinders were modeled
using MSC Marc. The mesh used to represent the cylinders was assumed to
be a perfect cylinder. Since a number of di�erent cylinder meshes would be
required for the three di�erent cylinders, a cylinder meshing script was created
in Python. The Python script creates a cylinder mesh based on the arbitrary
length, diameter, and desired nominal element size of the cylinder. The meshes
created are thin shell linear quad elements, which are the same elements used
in the uniaxial and bubble in�ation FE models.

Two load cases are used for the FE models. The �rst load case is the
in�ation of the cylinder. A cavity is de�ned to occur on the inside of the shell
elements with an enclosed gas. The cavity uses the ideal gas law to calculate
changes in mass, pressure, temperature, and volume. The properties of the
cavity gas are assumed to be atmospheric air with a reference pressure of
101 kPa, temperature of 300 K, and density of 1.2041 kg

m3 . A cavity pressure
load is applied with a linear pressure ramp to the desired in�ation pressure.
The second load case replicates the bending of the in�atable beam. Once the
cylinder is in�ated, the cavity pressure load changes to a constant mass load.
The constant mass load assumes the mass of air to be constant and uses the
ideal gas law to calculate the PV work of the bending in�ated cylinder.
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Figure 6.7: Center load displacement of the three point bending test on the 250 mm
diameter cylinder for three di�erent in�ated pressures

Figure 6.8: 150 mm diameter in�atable cylinder at the buckling load in the three
point bending test con�guration

Rigid cylinders were created to model the supports and collar of the three
point bending test setup. These rigid cylinders were used as contact bodies
and can be seen as the two supports and collar around the in�atable FE model
in Figure 6.9. The cylinder is simply supported during in�ation, but once the
cylinder is in�ated the only boundary conditions are the contact between the
supports, collar, and in�ated cylinder. Displacement control was used in the
FE model for both the supports and collar. The two supports are set to have
a displacement of zero throughout the bending load case, while the collar dis-
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places with a linear displacement ramp perpendicular to the in�atable cylinder.
The displacing collar bends the in�atable cylinder as seen in Figure 6.10.

Figure 6.9: In�ated 150 mm diameter cylinder in MSC Marc with rigid elements
replicating the three point bending boundary conditions

Figure 6.10: Bending 150 mm diameter in�atable cylinder FE model due to the
displacement controlled rigid collar

Contact is used to model the interaction between the supports and the
cylinder, and the interaction between the collar and the cylinder. Both the
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supports and collar are geometric rigid cylinders, while the in�atable cylinder
is a meshed deformable contact body. Node to segment contact was used
with the default Marc contact parameters. Segment to segment contact was
used in a test case, in which the load displacement results of the three point
bending in�atable beam were nearly identical to the node to segment contact
model. The contact normal force was exported along the nodes in contact
with the collar to calculate the total three point bending load. In addition,
the center node of the cylinder in contact with the collar was also exported.
The sumation of the contact normal forces as well as the exported displacement
node are used to create load displacement curves that can be compared with
the physical three point bending tests.

Mesh convergence for the cylinders is demonstrated in Appendix D. It
is di�cult to perform a full mesh convergence study on the cylinders because
wrinkling becomes profound on the cylinder with small element sizes. Wrinkles
forming on the FE model creates convergence problems while increasing the
computational expense. The meshes used for computation were the �nest
possible that would allow the cylinder to in�ate without issues from the solver.

The seam running down the length of the cylinder is modeled such that
shell elements in the area of the seam have triple the thickness, because the
seam has three layers of PVC-coated polyester. The triple thickness elements
cause the cylinder to have extra sti�ness on the one side of the cylinder. The
extra sti�ness on one side causes the cylinders to in�ate with a slight arc as seen
in Figure 6.9. This arc is also noticed when in�ating the physical PVC-coated
cylinders.

It is important to assign an element orientation when using an orthotropic
material model, as the material model is direction depended. A local coordi-
nate system was applied to the end caps of the cylinders. The elements on the
end cap are aligned in a direction that is representative of the physical cylin-
ders. However, elements along the length of the cylinder use the elemental
coordinate system rather than a global alignment. The elemental coordinate
system was set up, such that the element's primary direction runs down the
length of the cylinder. While the element's secondary direction runs in the
circumferential direction of the cylinder. The elemental coordinate system
matches the physical construction of the cylinders, because the warp material
direction runs along the length of the cylinders.

The FE models capture the pressure volume work of the bending in�atable
beam. In general the increase of pressure of the beam is small as the beam
undergoes three point bending, because the volume change of the in�atable
cylinder is small. Figure 6.11 shows the pressure volume relationship of a
150 mm diameter in�atable cylinder undergoing three point bending. The
cylinder was in�ated to a pressure of 140.0 kPa prior to bending. The cylinder
was de�ected a total of 240 mm in three point bending, at which the pressure
increased from 140.0 kPa to 141.1 kPa.
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Figure 6.11: Pressure volume work of three point bending 150 mm diameter cylin-
der in�ated to 140.0 kPa

6.5 FE Bending Results of Material Models

Three point bending FE models were created with the four bubble material
models and the uniaxial material model. The results of the 150 mm diameter
cylinder are seen in Figures 6.12 - 6.14. The results of the 200 mm diameter
cylinder are seen in Figures 6.15 - 6.17. The results of the 250 mm diameter
cylinder are seen in Figures 6.18 - 6.20.

The uniaxial material model matches the load displacement curve of the
150 mm diameter cylinder better than the 200 mm or 250 mm diameter cylin-
ders. However for all nine tests, the uniaxial material model underestimates
the sti�ness of the in�atable beam. The uniaxial material model also matches
the load displacement curve better at low pressures than at high pressures.

The variance of the bubble material models is larger than the variance of
the physical test data. The bubble material model from test 4 generally falls
within the load displacement physical test data. In contrast to the uniaxial
material model, the bubble material models overestimate the sti�ness of the
in�atable beams.

The FE models don't accurately predict the buckling load of the in�atable
beams. The load of the physical test results goes above the buckling load in the
FE models in Figures 6.13 - 6.15. However before buckling can be predicted
by the FE models, the FE models must �rst be able to accurately predict the
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load displacement behavior of the in�atable beams.
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Figure 6.12: Three point bending load displacement results of 150 mm diameter
cylinder in�ated to 90 kPa compared to FE analyses using di�erent material models
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Figure 6.13: Three point bending load displacement results of 150 mm diameter
cylinder in�ated to 110 kPa compared to FE analyses using di�erent material models
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Figure 6.14: Three point bending load displacement results of 150 mm diameter
cylinder in�ated to 140 kPa compared to FE analyses using di�erent material models
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Figure 6.15: Three point bending load displacement results of 200 mm diameter
cylinder in�ated to 60 kPa compared to FE analyses using di�erent material models
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Figure 6.16: Three point bending load displacement results of 200 mm diameter
cylinder in�ated to 80 kPa compared to FE analyses using di�erent material models
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Figure 6.17: Three point bending load displacement results of 200 mm diameter
cylinder in�ated to 100 kPa compared to FE analyses using di�erent material models
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Figure 6.18: Three point bending load displacement results of 250 mm diameter
cylinder in�ated to 50 kPa compared to FE analyses using di�erent material models
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Figure 6.19: Three point bending load displacement results of 250 mm diameter
cylinder in�ated to 65 kPa compared to FE analyses using di�erent material models
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Figure 6.20: Three point bending load displacement results of 250 mm diameter
cylinder in�ated to 85 kPa compared to FE analyses using di�erent material models
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Chapter 7

Conclusion

Uniaxial tests were performed on PVC-coated polyester, from which a non-
linear orthotropic material model was determined. A new inverse bubble in�a-
tion method was presented and demonstrated. Non-linear orthotropic material
models were determined from bubble in�ation tests on PVC-coated polyester.
Multiple three point bending tests on PVC-coated polyester cylinders were
performed to validate the created non-linear orthotropic material models. The
inverse bubble in�ation material models had a tendency to overestimate the
stu�ness of the in�atable beams, while the uniaxial material model underes-
timated the sti�ness.

7.1 Uniaxial Material Models

Five uniaxial tests were performed on PVC-coated polyester in each of the
warp, �ll, and 45◦ bias material directions. The �ve tests produced load dis-
placement curves that were similar in each material direction. Finite element
(FE) models were created to replicate the warp, �ll, and 45◦ bias uniaxial tests.
A non-linear orthotropic material model was determined using optimization to
match the load displacement results of the tests in the warp, �ll, and 45◦ bias
material directions. The non-linear orthotropic material model matched the
warp, �ll, and 45◦ bias uniaxial load displacement data extremely well.

7.2 Inverse Bubble In�ation Method

An inverse bubble in�ation test was performed from a known non-linear or-
thotropic material model. It was demonstrated that the test produced non-
linear material models similar to the solution. Thus the inverse bubble in�a-
tion method is capable of obtaining non-linear material models suitable for FE
analysis.

Polynomial surfaces were �tted to the nodal FE displacement results of the
known material model. These polynomials are utilized as the solution in the

78
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formation of the objective function. Physical test data can be easily utilized in
the established inverse bubble in�ation method. Polynomials can be �tted to
the full displacement �eld data that one may obtain by using a multi-camera
digital image correlation (DIC) system.

The inverse bubble in�ation test requires full displacement �eld matching.
It was �rst attempted to obtain non-linear material models by matching the
bubble shape, however this was unsuccessful. Many di�erent material models
were found to produce a similar bubble shape. Thus the nodal x, y, and z
displacements are matched instead, because the full displacement �eld response
is unique to a particular material model.

The inverse method can be utilized to obtain non-linear material models
from physical bubble in�ation tests through gradient optimization. The per-
formance of non-gradient based optimizations on the inverse bubble test, as
well as other algorithms is still unknown. A simulation study can be per-
formed on bubbles originating from shapes other than a circle to improve the
e�ectiveness at characterizing a particular material parameter.

7.3 Bubble In�ation Tests

Four bubble in�ation tests were performed on PVC-coated polyester. From
each bubble test, a non-linear orthotropic material model was determined from
the bubble test data by using the method established in Chapter 4. The
resulting material models were similar to each other, but di�erent to the non-
linear orthotropic material model determined from the uniaxial testing.

The bubble material models were used in FE models that replicate the
uniaxial tests. In the material warp direction the bubble material models
produced a similar load displacement curve as the uniaxial test. However, the
bubble material models produced very di�erent load displacement curves in
the �ll and 45◦ bias uniaxial tests. In the �ll direction, the bubble material
models severely underpredicted the sti�ness. While the bubble material model
produced a sti�er 45◦ bias uniaxial response than the physical test in the
45◦ bias direction.

7.4 In�atable Beam Testing

Three in�atable cylinders were manufactured from PVC-coated polyester, all
3 m in length, with diameters of 150 mm, 200 mm, and 250 mm. Each cylinder
was tested in three point bending, at three di�erent in�ated pressures.

FE models were created to replicate the three point bending tests. The
four bubble material models and, the uniaxial material model were run to
understand which material model predicted the load displacement behavior of
the three point bending tests the best. In general the bubble material models
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overestimated the sti�ness of the in�atable beams, while the uniaxial material
model underestimated the sti�ness. The material model from bubble test 4
matched the entire test data well, however the other bubble material models
generally overestimate the sti�ness of the beam.

Overall the inverse bubble material models matched the load displacement
bending test data as well as the uniaxial material model. The uniaxial material
model matched better for the 150 mm diameter cylinder, while the bubble
material models matched better with the 250 mm diameter cylinder. The
bubble material models overestimated, just as much as the uniaxial material
model underestimated, for the 200 mm cylinder.

It is important to address how the material models and bending beam tests
each experienced di�erent biaxial load ratios, as the biaxial load ratio may have
in�uenced the results. The biaxial load ratio from the uniaxial tests is in�nity,
while the bubble test had a load ratio of 1. The material models were created
with load ratios that were di�erent than the load ratio of 2 from the in�atable
beam tests. At this time the exact e�ect of the load-ratio dependence of the
material is unknown, and it would be recommended for future study to perform
biaxial tests on the material with load ratios of 1 and 2 to understand the full
e�ect of the load ratio.

7.5 Future Work

Three additional cylinders have been manufactured out of a di�erent PVC-
coated polyester. A non-linear orthotropic material model will be calculated
for this new PVC-coated polyester from both uniaxial and inverse bubble in-
�ation tests. The material models will be compared against each other, and
against the three point bending results of the FE models to see if the results
presented in this thesis are repeatable.

The bubble in�ation test �xture uses a circular clamp to secure the in�ating
membrane material. This is traditionally how the bubble test has been per-
formed. The inverse bubble in�ation test matches the full displacement �eld
of a bubble test to create a material model. Optimization may be performed
on the shape of the bubble test �xture to produce a more unique displacement
�eld that results in more pronounced shear stress for a variety of materials.
The more unique a displacement �eld, the easier it would be for the inverse
method to determine the material model.

Polynomial surfaces were �tted to the displacement �eld at speci�ed in-
crements of the bubble in�ation test data. The inverse optimization utilized
these polynomials rather than the actual test data. Little time was spent im-
proving the �ts of the polynomial surfaces. A mathematical model could be
�tted to the entire bubble in�ation test data rather than at speci�c points,
which would make it easier for arbitrary bubble tests to be coupled to the
inverse FE analysis. Other statistical modeling methods, such as Kriging and
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support vector regression, could be used to better model the bubble test data.
Potentially superior models of the experimental test data may improve the
process of matching material models with the inverse bubble in�ation test.

The inverse bubble in�ation test method was created with the intention
of being a tool for determining non-linear material models for a variety of
membrane materials. There is not a well-established method for determining
starting points for the inverse optimization problem, as starting points are
randomly generated. Thus the �rst few iterations of the optimization problem
are spent improving material model parameters from a poor guess. Machine
learning could be included in the package to dramatically improve the compu-
tational expense of the inverse bubble in�ation tests, by proposing reasonable
starting points based on the bubble in�ation test data. The results of each FE
analysis could be stored in an arti�cial neural network, which could propose
better starting points based on the bubble in�ation test data and previously
stored material models. Such methods may dramatically improve the feasibly
and cost e�ectiveness of an inverse bubble in�ation test method.

An initial study of the Poisson's ratio sensitivity for a bubble FE model
showed that the maximum displacement varied by ± 3.0 percent. It was
thought that this di�erence would make it possible to determine the Pois-
son's ratio with the inverse bubble in�ation technique. However, optimization
results from a test problem where unable to determining an appropriate Pois-
son's ratio for the material model. It is suspected that Poisson's ratio may
be non-unique to the bubble test's full displacement �eld, thus the inverse
bubble in�ation test would be incapable of determine the Poisson's ratio. A
potential project may be to investigate the limitations of the Poisson's ratio
in determining material properties for in�atable structure's, as the in�uence
of Poisson's ratio for an in�atable structure is still unknown.
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Appendix A

Digital Image Correlation on Steel

Ball

To understand the capabilities of the Digital Image Correlation (DIC) system
at capturing a curved surface in three dimensions (3D), images were captured
with the DIC on a steel bearing ball having a radius of 40 mm. An equation
of a sphere is �t to the data points of the surface captured by the DIC. The
radius from the spherical �t and the known radius are compared. The average
percent error between the radii was 0.42, suggesting that the DIC data points
captured from the ball's surface are accurate.

A.1 DIC Data on Steel Bearing Ball

Five sets of images were taken on a steel bearing ball having a radius of 40.0
mm using the DIC system. In each set of images, the ball is rotated and moved
to a new location in 3D space before images are recorded by the DIC. Data
points captured in 3D space can be seen in Figure A.1, where 52,080 data
points make up the surface of the steel bearing ball.

Data points missing from the �gure are where the DIC failed to �nd a
unique contrast pattern in the subset of the image, or where the surface wasn't
visible by both cameras. It is impossible for a two camera DIC system to
capture the entire surface of a sphere. The range of which the two camera
DIC system was able to correlate data points to the surface of the ball can be
seen in Figures A.2 and A.3 for one set of images taken on the ball. In the
xz plane approximately 90◦ of the ball's surface was captured, while in the yz
plane approximately 144◦ of the ball's surface was captured by the DIC. This
range is largely dependent on the camera setup, as a contrast pattern can only
be correlated if the pattern is visible in both cameras. The center point of
the sphere was determined by �tting the equation of a sphere to the DIC data
points using the least squares method.
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Figure A.1: 52,080 DIC data points captured from the surface of the steel bearing
ball plotted in 3D

A.2 Least Squares Spherical Fit

The general equation of a sphere in x, y, and z coordinates is stated in Eq. A.1.
The center point of the sphere with radius r is found at the point ( x0, y0, z0
). The following expands the general equation of a sphere such that the least
squares method can be used to �t to the DIC Data points.

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2 (A.1)

After expanding and rearranging the terms, the new equation of a sphere
is expressed in Eq. A.2, which needs to be expressed in vector/matrix notation
in order to perform a least squares �t.

x2 + y2 + z2 = 2xx0 + 2yy0 + 2zz0 + r2 − x20 − y20 − z20 (A.2)

The ~f vector in Eq. A.3, the A matrix in Eq. A.4, and the ~c vector in
Eq. A.5 represent the consolidated terms of the expanded sphere equation of
Eq. A.2. The terms xi, yi, and zi represent the �rst DIC data point, while xn,
yn, and zn represent the last DIC data point on the surface of the ball.
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Figure A.2: 52,080 DIC data points approximately captured 90◦ from the surface
of the steel bearing ball plotted in the xz plane

~f =


x2i + y2i + z2i

x2i+1 + y2i+1 + z2i+1
...

x2n + y2n + z2n

 (A.3)

A =


2xi 2yi 2zi 1
2xi+1 2yi+1 2zi+1 1
...

...
...

...
2xn 2yn 2zn 1

 (A.4)

~c =


x0
y0
z0

r2 − x20 − y20 − z20

 (A.5)

The over-determined system suitable for the least squares method of a
spherical �t is represented in Eq. A.6. The least squares method determines
the best ~c from the DIC data points. Information about the center point and
radius of the sphere are contained in ~c.

A spherical least squares �t was performed to the �ve sets of images
recorded by the DIC. For a single test, the data points captured in 3D space
plotted on top of the �tted sphere can be seen in Figure A.4.
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Figure A.3: 52,080 DIC data points approximately captured 144◦ from the surface
of the steel bearing ball plotted in the yz plane

~f = A~c (A.6)

A.3 Radius Comparison

The radii determined from least squares �t to the DIC data points on the steel
ball's surface are presented in Table A.1. All �ts determined a radius very
near to the 40.0 mm radius of the steel bearing ball, with 0.67 being the worst
percent error. The average percent error was 0.42 for the radii. This suggests
that the DIC can accurately determine 3D points on a highly curved surface.

Table A.1: Radius determined by spherical least squares �t to �ve sets of DIC
images on steel bearing ball

DIC Image Set Least Squares Radius (mm) Percent Error

1 39.73 0.67
2 39.78 0.54
3 39.90 0.23
4 39.85 0.38
5 39.89 0.28
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Figure A.4: 52,080 DIC data points captured from the surface of the steel bearing
ball plotted in 3D on top of the �tted sphere
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Festo SPTE-P10R-S4-V-2.5K

Pressure Transmitter

The Festo SPTE-P10R-S4-V-2.5K pressure transmitter was used as the relative
pneumatic pressure recording device for the bubble in�ation tests and the
in�atable beam tests. The device is powered by direct current with a potential
of 18 - 30 volts, and has a pressure measuring range of 0 - 1,000 kPa. The
SPTE converts relative pneumatic pressure into an analog reading, such that
0 volts occurs at a relative pressure of 0 kPa and 10 volts is outputted at a
pressure of 1,000 kPa. The SPTE has an accuracy of ± 3 percent at ambient
temperature with a repetition accuracy of ± 0.3 percent. Both accuracies
are rated for the full scale pressure range, meaning the accuracy at ambient
pressure is ± 30 kPa with a repetition accuracy of ± 3 kPa.

Simultaneous measurements were recorded with the SPTE and a Druk-
meter 2500 kPa Wika Instruments to ensure the accuracy of the SPTE. The
accuracy of the Wika Instruments pressure gage was ± 75 kPa. The raw re-
sults of the test is presented in Figure B.1, where it is seen that the SPTE
and Wiki Instruments pressure gage are in strong agreement. No adjustments
were made to the SPTE readings as the data collected falls within the accepted
accuracies of both devices.
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Figure B.1: Agreement of raw SPTE and Wiki Instruments pressure values
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Appendix C

ASM Posiwire

WS12-2000-10V-L10 Draw Wire

The ASM Posiwire WS12-2000-10V-L10 draw wire position transmitter was
used to measure the displacement of the three point bending tests. The draw
wire is limited to a length of 2,000 mm. The device outputs an analog voltage
of 5 volts per 1,000 mm. The draw wire was pulled alongside a meter stick
to understand the accuracy of the sensor. The values measured by the ASM
Posiwire WS12-2000-10V-L10 sensor were within ± 1 mm of the meter stick
reading and are presented in Figure C.1. The draw wire position sensor was
determined to be highly accurate device for measuring displacement.
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Figure C.1: Agreement of ASM Posiwire WS12-2000-10V-L10 draw wire position
sensor and meter stick displacement measurements
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Appendix D

Three Point Bending Mesh

Convergence

Convergence behavior is demonstrated in Figure D.1 for the 150 mm cylinder.
It is shown that the 10,760 element mesh produces a load displacement curve
for three point bending that is analogous to the 3,864 element mesh. The
10,760 element mesh was used for the Finite Element (FE) models of the
150 mm cylinder.
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Figure D.1: Demonstrated load displacement mesh convergence for the 150 mm
cylinder in three point bending
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92 APPENDIX D. THREE POINT BENDING MESH CONVERGENCE

Convergence behavior is demonstrated in Figure D.2 for the 200 mm cylin-
der. It is shown that the 16,130 element mesh produces a load displacement
curve for three point bending that is analogous to the 2,952 element mesh. The
2,952 element mesh was used rather than the 16,130 element mesh to reduce
the computational time of the FE models for the 200 mm cylinder.
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Figure D.2: Demonstrated load displacement mesh convergence for the 200 mm
cylinder in three point bending

Convergence behavior is demonstrated in Figure D.3 for the 250 mm cylin-
der. It is shown that the 4,288 element mesh produces a load displacement
curve for three point bending that is analogous to the 2,400 element mesh. The
4,288 element mesh was used for the Finite Element models of the 250 mm
cylinder.
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Figure D.3: Demonstrated load displacement mesh convergence for the 250 mm
cylinder in three point bending
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