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ABSTRACT: Selecting an appropriate material model to generalize complex material behavior can be a diffi-
cult task, as there are many different formulations to choose from in commercial finite element (FE) programs.
Four bulge inflation tests were performed on a PVC-coated polyester material with equivalently rated warp
and fill strengths. Digital image correlation (DIC) was used to capture the full displacement field of the mate-
rial at various pressure increments. An inverse analysis was set up to find material parameters in a FE model
that matched the full displacement field of the experimental test. Cross validation was performed to investigate
whether the physical behavior was better represented by an isotropic or orthotropic material model. This in-
volved leaving out one of the four tests at a time. The orthotropic material model resulted in an average absolute
deviation on the full displacement field that was 0.5% better than the isotropic model.

1 INTRODUCTION

The finite element (FE) method has become an impor-
tant design tool for membrane structures, but it can
be challenging to select the most appropriate material
model for structural membrane materials. This is es-
pecially true for the most complex and non-linear ma-
terials including coated woven fabrics. Inverse anal-
yses, or iterative schemes for FE model updating
(FEMU) have been used to find material parameters
from complex load cases. This paper proposes the use
of cross validation to help select appropriate material
models when using an inverse analysis (or FEMU) to
determine parameters. Here, cross validation is used
to select whether an isotropic or orthotropic material
model is more appropriate for PVC-coated polyester
characterized with a bulge inflation test.

PVC-coated polyester is a coated textile. It’s most
commonly modeled as an orthotropic material (Shaw
et al. 2010), which is largely dependent on the warp
to fill strength ratio (Dinh et al. 2017). Various non-
linear models have been used in an attempt to bet-
ter describe the behavior of the material. This has
included a non-linear load ratio model (Galliot and
Luchsinger 2009) and other non-linear orthotropic
models (Ambroziak and Kłosowski 2014, Jekel et al.
2017).

Biaxial tests are commonly used to characterize
material parameters for structural membrane materi-
als (Stranghöner et al. 2016). Bulge (or bubble in-
flation) tests are a popular methodology to induce
an equal biaxial load on the material. These bulge
tests typically involve inducing a pressure on one side
of a circularly clamped membrane material (Rachik
et al. 2001, Charalambides et al. 2002, Machado et al.
2012, Tonge et al. 2013). The measured pressure and
displacements are then used to infer material parame-
ters.

Digital image correlation (DIC) is a non-invasive
deformation measuring technique that has been used
in a variety of applications (Becker et al. 2012, Muri-
enne and Nguyen 2016, Mejı́a and Lantsoght 2016).
The technique uses the correlation between consecu-
tive images to calculate a full 3D displacement field.
For bulge tests, DIC is an ideal tool to obtain a full
3D displacement field while not interfering with the
inflation or deflection of the membrane material.

Material parameters in various models have been
identified using FEMU (Lovato et al. 1993, Cailletaud
and Pilvin 1994, Drass and Schneider 2016). The pro-
cess can be generalized by using optimization to find
parameters in a FE model to match some experimen-
tal behavior. In a forward problem parameters can be
directly inferred from an experimental test. While an
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Figure 1: Bulge inflation test overview.

inverse problem attempts to tweak a model (like with
FEMU) to find parameters that resemble an experi-
mental response.

Four bulge inflation tests were performed on PVC-
coated polyester. A FE model was constructed to
replicate the physical conditions of the test. Inverse
analyses were set up to determine isotropic and or-
thotropic material parameters by matching the FE
model to the full displacement field of the bulge tests.
Cross validation was then used to determine which
material model had a better generalization of the ex-
perimental responses.

2 METHODS

An online repository is available at https://
github.com/cjekel/inv_bubble_opt which in-
cludes the source code to perform the inverse anal-
ysis.

2.1 Experimental tests

The bulge inflation tests involve clamping a sample
of membrane material into a circular clamp. Pressure
is then induced on one side of the material. Displace-
ments were measured using DIC of the material while
simultaneously recording the inflation pressure. The
DIC system used was the StrainMaster with DaVis
(LaVision GmbH 2014). A visual annotation of the
bulge inflation test setup is provided in Figure 1.

Four bulge inflation tests were performed. The
PVC-coated polyester tested was Mehler Texnologies
VALMEX R© 7318. This material has a warp and fill
tensile strength of about 3000 N/50 mm, a mass of
1000 g per square meter, and a thickness of 0.81 mm.
Since the warp and fill strength from the manufac-
turer are equivalent, it might seem reasonable to in-
vestigate an isotropic material model. However, an
isotropic material model would ignore the influence
of the weave. Each test was inflated from zero to
three bar.

Table 1: Number of unique (x, y, p) data points from each test
and inflation pressures.

Test # of data points # of pressures
1 1,836,961 49
2 729,718 7
3 1,201,509 36
4 788,702 29

The bulge inflation tests using DIC resulted in a lot
of generated data as shown in Table 1. The xy-plane
coincided with the surface of the material prior to in-
flation, and the material was inflated in the z direction.
The DIC system tracks the full displacement field of
the bulge as it deforms. Each test resulted in approxi-
mately one million data points, where each data point
represents a unique combination of inflation pressure
p and initial x, y location. The deformation of each
data point is represented as ∆x,∆y, and ∆z.

2.2 Finite Element model

An implicit non-linear FE model was constructed in
ABAQUS to resemble the physical boundary condi-
tions of the bulge inflation test. While there are analyt-
ical solutions to bulge inflation tests for isotropic and
orthotropic material models (Sheplak and Dugundji
1998), it’s desirable to use a FE model for designing
other complex geometries. The model uses adaptive
time stepping, and outputs the displacement fields at
201 pressure load steps between zero and three bar.

Linear isotropic and orthotropic material models
were investigated. The isotropic model consists of
two unknown parameters: the stiffness modulus (E)
and the shear modulus (G). The orthotropic model
was simplified as a three parameter model with a
constant Poisson’s ratio of 0.24. Jekel et al. (2016)
showed that an orthotropic FE model of a bulge test
was insensitive to Poisson’s ratio. Using a constant
Poisson’s ratio simplifies issues with gradient mag-
nitudes, as it’s expected the gradient of Poisson’s
ratio will always be less than the stiffness moduli.
The three unknown parameters in the simplified or-
thotropic model are the stiffness moduli (E1 & E2),
and the shear modulus (G12).

The displacement field of the FE model for an or-
thotropic material model at 2.0 bar is shown in Fig-
ures 2-4. Radial Basis Functions (RBF) are used to
interpolate the displacements from the initial (x, y)
node locations at each outputted pressure. The RBFs
are exact at the node locations, and result in a smooth
displacement field from the linear four node FE ele-
ments. The code available online contains an object
to construct these RBFs to the full displacement field
of the FE analysis using the SciPy rbf function (Jones
et al. a).

Linear interpolation was used to evaluate the FE
model’s displacement in between the exported pres-
sures, rather than exporting the node locations at the
exact test pressures. The rational for this choice was
that the FE model could be constructed independent
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Figure 2: Displacement ∆z of FE model at 2.0 bar.
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Figure 3: Displacement ∆x of FE model at 2.0 bar.
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Figure 4: Displacement ∆y of FE model at 2.0 bar.

of the test data. This allows for additional tests to
be conducted and used in the inverse analysis with-
out modifying the FE model’s load increments. Lin-
ear interpolation is use to solve the displacement field
∆(x, y, p) by interpolating the displacement field at

the two nearest pressures as

∆(x, y, p)−∆(x, y, p1)

p− p1

=
∆(x, y, p2)−∆(x, y, p1)

p2 − p1

(1)

where p2 and p1 represent the nearest pressures of the
FE models’ load steps.

2.3 Inverse analysis

Optimization is used to find the material model pa-
rameters which minimize the discrepancy between
the physical bulge inflation tests and the FE model.
This discrepancy is formulated as the average L1 dis-
tance in mm as

e(β) =
nt∑
j

r∆x(j,β) + r∆y(j,β) + r∆z(j,β)

nt

(2)

where nt is the total number of tests. The average ab-
solute deviation between the x displacement of the FE
model and inflation test is denoted r∆x(j,β) for the j
test and β set of material parameters. These average
absolute deviations are expressed as

r∆x(j,β) =

nj∑
i=1

|∆x(xi, yi, pi)t −∆x(xi, yi, pi,β)f |
n

(3)

r∆y(j,β) =

nj∑
i=1

|∆y(xi, yi, pi)t −∆y(xi, yi, pi,β)f |
n

(4)

r∆z(j,β) =

nj∑
i=1

|∆z(xi, yi, pi)t −∆z(xi, yi, pi,β)f |
n

(5)

where nj is the total number of data points in the j
test. The subscripts t is for the physical inflation test
data, while the subscript f is from the FE model.

The optimization problem is then stated as

minimize: e(β) (6)

subject to: βl ≤ βk ≤ βu, k = 1,2, · · · , np. (7)

where β is the vector of material parameters which
are restricted to some reasonable lower and upper
bounds. The isotropic parameters are expressed as
β = (E,G), and the simplified orthotropic parame-
ters are expressed as β = (E1,E2,G12).

The optimization strategy used involved first start-
ing with a global optimizer with an allocated num-
ber of function evaluations. When the global opti-
mizer reached the limit of function evaluations, a lo-
cal optimizer was used to polish the result. The global



optimization strategy used was Efficient Global Op-
timization (EGO), which utilized the expected im-
provement from a Gaussian process to minimize
the function (Jones et al. 1998, The GPyOpt au-
thors 2016). A variant of the BFGS (Broyden 1970,
Fletcher 1970, Goldfarb 1970, Shanno 1970) gradi-
ent based optimization was used as the local opti-
mizer (Jones et al. b, Byrd et al. 1995). Initially 50
EGO function evaluations (calculations of e) were
performed before switching to the BFGS implemen-
tation. A budget of 200 function evaluations for the
BFGS appeared to be sufficient at finding a local op-
timum.

There is the possibility that some combination of
material parameters may cause the FE analysis to not
converge. This is problematic when the optimization
algorithm requires a discrepancy for a particular set of
parameters that are unable to converge. To deal with
this problem, the maximum objective value from the
run-time history was passed to the optimization algo-
rithm when the FE analysis failed to converge. Ad-
ditionally, a discrepancy value of 30 mm was passed
if the first function evaluation in a given run failed to
converge. This strategy works well with EGO, how-
ever it creates a non-differentiable objective function
which can be problematic for gradient based opti-
mization algorithms. Looking at the optimization his-
tory, the FE analysis would only fail to converge dur-
ing the line search stage of the gradient based op-
timization algorithm, and not the finite differences
which approximate the gradients. This is less prob-
lematic because the gradients were accurate, however
caution should be expressed when utilizing this strat-
egy with gradient based optimization algorithms.

2.4 Cross validation

Cross validation is a model selection or validation
tool used in various regression problems to assess the
quality of models(Queipo et al. 2005). Cross valida-
tion provides for a nearly unbiased estimate of the
modeling error, and can be used to diagnose over-
fitting or bias errors. Cross validation can be used
to compare the performance of one material model
to another in the context of fitting material models
with an inverse analysis (FEMU). This may be im-
portant in practice when the ideal material model is
unknown. In this case, cross validation will be used to
quantitatively compare how the linear isotropic and
orthotropic material models represent the behavior of
PVC-coated polyester from these bulge inflation tests.

The processes proposed is similar to leave-one-out
cross validation, and is described as:

1. Perform inverse analysis without test j

2. Calculate the discrepancy e on the left-out test j

3. Repeat 1 & 2 for all tests

4. The cross validation score is the average discrep-
ancy e from the left-out tests

This cross validation score was computed for both
the linear isotropic and orthotropic material models.
The model with the lower cross validation score is as-
sumed to be a better generalized representation of the
material behavior.

3 RESULTS

Inverse analyses were performed to fit isotropic and
orthotropic material models to the bulge inflation
tests. Additional inverse analyses were performed
such that a leave-one-test-out cross validation score
was computed for each material model. The result-
ing discrepancy values are presented in Table 2. The
orthotropic material model had lower discrepancy and
cross validation scores. This result implies that the or-
thotropic material model was a better representation
of the physical bulge inflation test than the isotropic
material model. While the orthotropic material model
was better, the difference between the cross validation
scores was only 0.5%.

Table 2: Resulting discrepancy from the inverse analysis and
leave-one-test-out cross validation.

Cross Validation
Model e (mm) eCV (mm) Range of e
isotropic 1.763 1.927 0.708
orthotropic 1.757 1.918 0.672

The isotropic material model parameters from the
full inverse analysis and the cross validation runs are
presented in Table 3. The stiffness modulus varied
from 0.155 to 0.198 GPa, and the shear modulus var-
ied from 0.052 to 0.070 GPa. The orthotropic material
model results are shown in Table 4. There was more
variance on theE1 modulus (0.228 to 0.312 GPa) than
the E2 modulus (0.232 to 0.246 GPa). Leaving test 1
out resulted in the most different material parameters
for both material models.

It’s interesting to evaluate the discrepancy from
each set of material parameters on the various cross
validation test configurations. This was done in Ta-
ble 5 for the isotropic material model, and Table 6
for the orthotropic material model. A row in the table
represents all of the discrepancy values from that set
of material parameters. The abbreviation CV1 repre-
sents the cross validation from leaving test 1 out, and
full represents the results from using all of the tests.

Table 3: Resulting isotropic material parameters from each in-
verse analysis. Note ν12 calculated from E and G.

GPa
E G ν12

All test data 0.166 0.055 0.509
Leaving test 1 out 0.155 0.052 0.490
Leaving test 2 out 0.193 0.067 0.440
Leaving test 3 out 0.167 0.056 0.491
Leaving test 4 out 0.198 0.070 0.286



Table 4: Resulting orthotropic material parameters from each in-
verse analysis.

GPa
E1 E2 G12

All test data 0.264 0.246 0.003
Leaving test 1 out 0.228 0.240 0.003
Leaving test 2 out 0.312 0.235 0.005
Leaving test 3 out 0.300 0.232 0.005
Leaving test 4 out 0.280 0.244 0.003

Table 5: Objective values from each isotropic material parameter
set.

Objective value e (mm)
Full CV1 CV2 CV3 CV4

Material Full 1.76 1.72 1.74 1.77 1.82
Material CV1 1.82 1.65 1.86 1.84 1.92
Material CV2 1.80 1.84 1.72 1.80 1.84
Material CV3 1.76 1.73 1.74 1.77 1.82
Material CV4 1.79 1.79 1.74 1.79 1.84

For each optimization to be successful, the minimum
in any given column should occur from the row of
the same name. Again for both the isotropic and or-
thotropic results it appears that leaving test 1 out re-
sulted in the most different objective functions.

4 DISCUSSION

The difference between the isotropic and orthotropic
material models was only 0.5% based on the cross
validation score of the discrepancy function. The dif-
ference being only 0.5% was an interesting outcome,
because an orthotropic material model is favored for
this material and it was expected to perform much bet-
ter than the isotropic material. Perhaps the inclusion
of Poisson’s ratio as a parameter in the orthotropic
model would result in an improved material model.
Again, cross validation scores could be used to evalu-
ate whether the orthotropic model benefits from the
additional parameter. If computational budget is a
concern, it should be cheaper to optimize the two pa-
rameter isotropic model as oppose to the orthotropic
model.

Leaving test 1 out resulted in the most different ma-
terial parameters and discrepancy values. This implies
that test 1 may be the most different of the other tests.
It may be interesting to fit material parameters to each
test individually, to see if the parameters from test 1
result in an outlier. The tests were conducted at dif-
ferent inflation rates, so it was not entirely unexpected
that individual test may result in different material pa-
rameters. The various inflation rates from each test
may have activated different non-linear material be-

Table 6: Objective values from each orthotropic material param-
eter set.

Objective value e (mm)
Full CV1 CV2 CV3 CV4

Material Full 1.76 1.72 1.73 1.77 1.81
Material CV1 1.81 1.64 1.85 1.83 1.90
Material CV2 1.78 1.82 1.71 1.77 1.81
Material CV3 1.76 1.76 1.72 1.77 1.81
Material CV4 1.76 1.75 1.72 1.77 1.80

havior.
For the orthotropic material when considering all

bulge tests, sets (E1 = 0.264,E2 = 0.246,G12 =
0.003), (E1 = 0.300,E2 = 0.232,G12 = 0.005), and
(E1 = 0.280,E2 = 0.244,G12 = 0.003) all produce
a discrepancy value of 1.76 mm to three digits. It’s
possible that the objective function was relatively flat
in this domain, since the discrepancy varied little be-
tween these material parameter sets.

5 CONCLUSION

An inverse analysis was proposed to find material
parameters by matching the full displacement from
bulge inflation tests on PVC-coated polyester. Op-
timization was used to find the material parameters
in a FE model that best matched the DIC experi-
mental displacement field. Cross validation was used
to select whether an isotropic or orthotropic mate-
rial model was a better representation of the PVC-
coated polyester in the bulge tests. The orthotropic
material model had a better cross validation score,
and was concluded as being a better representation of
the PVC-coated polyester. However, the cross valida-
tion discrepancy value was only 0.5% better than the
isotropic material model.

Cross validation as a model selection tool can be
used to identify overfitting, while also providing a
more realistic discrepancy in a potential sampling
bias. While overfitting is not much of a concern with
the large amount of data and few material parameters,
more complex and non-linear material models may
overfit the test data. In this study, the cross validation
indicates that the discrepancy was about 10% worse
than it appears due to sampling bias.

ACKNOWLEDGMENTS

Thanks to Sudharshan Udhayakumar for help con-
structing the FE model and comparing the FE model
to analytical solutions. Thanks to Andrés Bernardo
for helping set up script to process the full displace-
ment field data. Charles F. Jekel has received the fol-
lowing funding for his PhD research which has sup-
ported this work: University of Florida Graduate Pre-
eminence Award, U.S. Department of Veterans Af-
fairs Educational Assistance, and Stellenbosch Uni-
versity Merritt Bursary.

REFERENCES

Ambroziak, A. & P. Kłosowski (2014, jan). Mechanical prop-
erties for preliminary design of structures made from PVC
coated fabric. Construction and Building Materials 50, 74–
81.

Becker, T. H., M. Mostafavi, R. B. Tait, & T. J. Marrow (2012).
An approach to calculate the J-integral by digital image cor-
relation displacement field measurement. Fatigue & Fracture
of Engineering Materials & Structures 35(10), 971–984.



Broyden, C. G. (1970, mar). The Convergence of a Class of
Double-rank Minimization Algorithms 1. General Consider-
ations. IMA Journal of Applied Mathematics 6(1), 76–90.

Byrd, R. H., P. Lu, J. Nocedal, & C. Zhu (1995). A limited mem-
ory algorithm for bound constrained optimization. SIAM
Journal on Scientific Computing 16(5), 1190–1208.

Cailletaud, G. & P. Pilvin (1994). Identification and inverse prob-
lems related to material behaviour. Inverse problems in engi-
neering mechanics 1, 79–86.

Charalambides, M., L. Wanigasooriya, G. Williams, &
S. Chakrabarti (2002, jan). Biaxial deformation of dough us-
ing the bubble inflation technique. I. Experimental. Rheolog-
ica Acta 41(6), 532–540.

Dinh, T. D., A. Rezaei, L. Daelemans, M. Mollaert, D. V.
Hemelrijck, & W. V. Paepegem (2017). A hybrid micro-
meso-scale unit cell model for homogenization of the non-
linear orthotropic material behavior of coated fabrics used in
tensioned membrane structures. Composite Structures 162,
271–279.

Drass, M. & J. Schneider (2016). On the mechanical behavior
of transparent structural silicone adhesive–TSSA. In SEMC
2016–Sixth International Conference on Structural Engi-
neering, Mechanics and Computation, pp. 14–16.

Fletcher, R. (1970, jan). A new approach to variable metric al-
gorithms. The Computer Journal 13(3), 317–322.

Galliot, C. & R. Luchsinger (2009). A simple model describ-
ing the non-linear biaxial tensile behaviour of PVC-coated
polyester fabrics for use in finite element analysis. Compos-
ite Structures 90(4), 438–447.

Goldfarb, D. (1970). A family of variable-metric methods de-
rived by variational means. Math. Comp. 24 (1970), 23-26.

Jekel, C. F., G. Venter, & M. P. Venter (2016). Obtaining a hyper-
elastic non-linear orthotropic material model via inverse bub-
ble inflation analysis. Structural and Multidisciplinary Opti-
mization, 1–9.

Jekel, C. F., G. Venter, & M. P. Venter (2017, feb). Modeling
PVC-coated polyester as a hypoelastic non-linear orthotropic
material. Composite Structures 161, 51–64.

Jones, D. R., M. Schonlau, & W. J. Welch (1998, dec). Effi-
cient Global Optimization of Expensive Black-Box Func-
tions. Journal of Global Optimization 13(4), 455–492.

Jones, E., T. Oliphant, P. Peterson, & Others. SciPy: Open source
scientific tools for Python.

Jones, E., T. Oliphant, P. Peterson, & Others. {SciPy}: Open
source scientific tools for {Python}.

LaVision GmbH (2014). Product-Manual DaVis 8.2 Software
(8.2 ed.). Göttingen, Germany.

Lovato, G., F. Moret, P. Le Gallo, G. Cailletaud, & P. Pilvin
(1993). Determination of brazed joint constitutive law by in-
verse method. Le Journal de Physique IV 3(C7), C7—-1135.

Machado, G., D. Favier, & G. Chagnon (2012). Membrane cur-
vatures and stress-strain full fields of axisymmetric bulge
tests from 3D-DIC measurements. Theory and validation
on virtual and experimental results. Experimental mechan-
ics 52(7), 865–880.

Mejı́a, C. A. & E. O. L. Lantsoght (2016). Strain and deflec-
tion analysis in plain concrete beams and reinforced con-
crete beams by applying Digital Image Correlation. In SEMC
2016–Sixth International Conference on Structural Engi-
neering, Mechanics and Computation. CRC Press.

Murienne, B. J. & T. D. Nguyen (2016). A comparison of 2D and
3D digital image correlation for a membrane under inflation.
Optics and Lasers in Engineering 77, 92–99.

Queipo, N. V., R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan,
& P. Kevin Tucker (2005, jan). Surrogate-based analysis and
optimization. Progress in Aerospace Sciences 41(1), 1–28.

Rachik, M., F. Schmidtt, N. Reuge, Y. Le Maoult, & F. Abbeé
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