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A lack-of-fit test can be used to determine whether a finite element (FE) material model,
or experimental results should be the focus to improve overall model accuracy. The lack-
of-fit test compares the unbiased estimate of variance to the estimated variance from noise
within data. GSJ and Hart methods from literature are provided to estimate the noise
within data, and a generalized lack-of-fit test is described. The variance estimators are
compared and convergence is demonstrated on a simple regression problem. The lack-of-fit
test is then applied to a material calibration problem using the FE method. The lack-of-fit
test indicates that the shear component of a non-linear orthotropic material models could
be improved, despite already being considered an excellent fit. Additionally the lack-of-fit
test is used with a load-dependent Poisson’s ratio to demonstrate that the variance in the
experimental data should be reduced in order to improve the model.

Nomenclature

a Linear parameter for GSJ
an Parameter for Hart
b Linear parameter for GSJ
e Residual value
ẽ Pseudo residual value
e Residual value vector
ẽ Pseudo residual value vector
f(x) Dependent variable value at x

f̂(x) Predictive model value at x
F F -statistic value
H Tridiagonal matrix
n Number of data points
nβ Number of model parameters
P P-value
x Independent variable value
x Vector of independent variable values
X Regression matrix
β Model parameter
σ2 Variance
σ̂2 Unbiased estimate of variance
σ̂2
e GSJ variance estimator

∗PhD Student, Dept. of Mechanical and Aerospace Engineering University of Florida, and Dept. of Mechanical and
Mechatronic Engineering Stellenbosch University.
†Distinguished Professor, Dept. of Mechanical and Aerospace Engineering University of Florida, and AIAA Fellow.
‡Professor, Dept. of Mechanical and Mechatronic Engineering Stellenbosch University.
§Lecturer, Dept. of Mechanical and Mechatronic Engineering Stellenbosch University.

1 of 12

American Institute of Aeronautics and Astronautics



σ̃2 Hart variance estimator
σ̂2
x Variance estimator between consecutive x
σ̂2
f Variance estimator between consecutive f(x)

Subscript
i Index of data

I. Introduction

It has become common practice to calibrate material model parameters on experimental data for finite
element (FE) analyses. The overall accuracy of the FE model is dependent on the model’s ability to replicate
the material behavior. Thus it is important to select the best material parameters to accurately describe
the material behavior. In general parameter values are selected such that the FE model reproduces some
experimental results. The accuracy of the FE model can be improved by either improving the model (e.g.,
finding a better material model), or by improving the experimental data (e.g., reducing the uncertainty in
the experimental data). Potentially a lack-of-fit test may be used to decide which aspect (model or data)
should be the focus for improvement.

In this context a lack-of-fit investigation looks at whether the primary contribution of error is due to the
inherent variance in experimental data, or the inability of the material model to replicate the experimental
data. Mismatch between the FE model and experimental data is due to both the material model not being
accurate enough, and noise in the experimental data. However noise doesn’t just appear in experimental
data, and sometimes a poor model may generate aditional noise as demonstrated by Park et al.1 Noise leads
to discrepancies between the true material model and the captured experimental data. Additionally noise
in data may yield calibrated material parameters that are not accurate. A model passing the lack-of-fit
test indicates that the noise in the experimental data is limiting the accuracy of the calibrated parameters.
Alternatively a failed lack-of-fit test indicates that the material model is unable to replicate the response
captured in the experimental data.

Analysis of variance (ANOVA) is a widely used set of statistical models aimed at comparing variation
between data. ANOVA models include the partitioning of the sum of squares, lack-of-fit tests, likelihood
ratio test, and the F-test. Traditionally these methods require the data to have true replicates, though
practically obtaining these replicates is difficult for material tests. In terms of material response modeling,
true replicates would require multiple stress values for each strain value. However material test data is
typically collected in a way such that there is a dependent response as a function of some other independent
variable (e.g., variation of stress values among strain values for repeated uniaxial tests).

An example of the difference between true replicates and a typical material response can be seen in
figure 1. There are multiple f(x) values for a given x when looking at a response containing true replicates.
True replicates of experimental responses can be difficult to capture. An experiment is generally performed
to captured a response f(x) which varies with respect to x. The experiment itself is repeated, however the
captured responses may not contain replicates for the exact same independent variable x. There are classical
statistical methods that can be applied when true replicates exist.2

This paper goes on to describe the lack-of-fit test which is based on comparing a ratio of variances. First
the unbiased variance is calculated which represents the variance between the model and data. Then the
variance from the noise (or scatter) within the data is estimated. Two different variance estimators are
used from literature. First the popular GSJ variance estimator is described.3 Then a generalized variance
estimator proposed by Hart is described.4 These variance estimators are used to estimate the variance due
to the noise (or scatter) within experimental data. A classical lack-of-fit test is then described from the
literature by comparing these variances.

The GSJ and Hart variance estimators are compared against each other. Additionally the convergence
behavior of the variance estimators and the lack-of-fit tests is demonstrated on a simple linear regression
example. The lack-of-fit tests are then used on a material parameter identification problem. An example
shows a case where it is suggested that the shear component of a non-linear orthotropic material model be
improved in order to improve the accuracy of the FE model. Another example uses the lack-of-fit test to
show that the variation within experimental data be reduced in order to improve a load-dependent Poisson’s
ratio model.
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(a) True replicates
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(b) Typical response

Figure 1. True replicates shown in (a) where there are multiple f(x) for a unique x. A more typical response
is shown in (b) of collected experimental data where f(x) appears to demonstrate inherent variation amid
different x values.

II. Statistical Methods

The variances investigated either represent the variance from the error of the fit, or the variance from
noise (or scatter) within the data. Mathematical definitions of the variances are proposed from literature.
The unbiased variance represents the variance of the error between the model and data. The GSJ and Hart
methods are presented to approximate the inherent variance from noise within the data. Popular alternative
variance estimates are also mentioned, though this work emphasizes the GSJ and Hart methods. Lastly the
F -statistic is proposed for a generalized lack-of-fit test.

A. Unbiased Variance

The residual e is described as
e = f(x) − f̂(x) (1)

where the predictive model is represented by f̂(x), and the data is represented by f(x). The unbiased
estimate of the variance is

σ̂2 =
e · eT
n− nβ

(2)

for a linear regression problem, with n number of data points, and nβ number of parameters in the predictive
model.2a The unbiased estimate of the variance assumes that the model accurately describes the data. If
this unbiased variance is significantly larger than the variance due to noise in the data, then the model is
not accurate.

The measure of the lack-of-fit can be described by the difference between the unbiased variance and the
variance from noise in data. It is common to use the unbiased variance as a goodness-of-fit metric for a
predictive model. It can be noted that e · eT represents the sum of the square of the residuals, another
metric that is often used to represent goodness-of-fit for regression problems.

B. GSJ Variance Estimator

Gasser et al. proposed a variance estimator based on local linear fitting between three consecutive points.3

This method for estimating variance is commonly referred to as the GSJ method and was originally intended
for non-linear regression. However, the GSJ method isn’t just limited to applications in non-linear regression.
For instance the GSJ method can be used to approximate the variance due to noise (or scatter) within data.

aMyers et al. in Ref. 2 refers to σ̂2 as the unbiased estimator. It was chosen to refer to this term as the unbiased variance
in order to avoid confusion from the later described variance estimators.
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Let’s considered a data set f(x), where x is ordered as x1 < x2 < · · · < xn. A vector of pseudo residuals
ẽ can be constructed by considering every three consecutive data points. A single pseudo residual ẽi is
described by

ẽi =
xi+1 − xi
xi+1 − xi−1

f(xi−1) +
xi − xi−1

xi+1 − xi−1
f(xi+1) − f(xi) (3)

= aif(xi−1) + bif(xi+1) − f(xi) (4)

for i = 2, 3, · · · , n− 1. The variance σ̂2
e of the estimated noise within data is obtained by taking

σ̂2
e =

1

n− 2

n−1∑
i=2

e2i
a2i + b2i + 1

(5)

where n represents the number of data points. It’s worthwhile to note that σ̂2
e can be calculated for all one

dimensional data containing at least three points. The GSJ variance estimator becomes more accurate as
the number of data points increases, and this convergence behavior is demonstrated in Section III.

C. Hart Variance Estimator

Hart proposed a generalized variance estimator useful for lack-of-fit tests.4 The estimator considers the noise
within data by taking differences between every two consecutive residuals. The derivation is meant for linear
regression problems, however it can be extended to non-linear regression problems by using the linearized
regression matrix described by Coppe et al.5 An example regression matrix X for fitting a quadratic
polynomial to data is represented bellow.

X =


1 x1 x21
1 x2 x22
...

...

1 xn x2n

 (6)

The data should be ordered consecutively as x1 < x2 · · · < xn. Thus the first residual is defined as the
difference between the data and predictive model at the first location e1 = f(x1)− f̂(x1), the second residual

e2 = f(x2) − f̂(x2), and so forth as en = f(xn) − f̂(xn). The estimate of the variance from the noise in the
data σ̃2 is described as

σ̃2 =
eT ·H · e

an
(7)

=
1

an

n∑
i=2

(
ei − ei−1

)2
(8)

where an = 2(n− 1) − trace(HX(XTX)−1XT) and H is the n× n tridiagonal matrix.

H =



1 −1 0 0 0 · · · 0 0 0

−1 2 −1 0 0 · · · 0 0 0

0 −1 2 −1 0 · · · 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 · · · −1 2 −1

0 0 0 0 0 · · · 0 −1 1


(9)

Hart uses this generalized variance estimate to perform non-parametric lack-of-fit tests, stating that it is more
conservative than GSJ. However unlike GSJ, Hart’s method is dependent upon the chosen regression model.
The convergence behavior of the Hart variance estimator (with respect to the accuracy of the regression
model and the number of data points) is demonstrated in Section III.
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D. Alternative Variance Estimators

Various other methods have been used to estimate the variance from noise in data. Notable simple methods
include estimating the noise by the variation between consecutive x points as σ̂2

x, or by the variation between
consecutive f(x) points as σ̂2

f .

σ̂2
x =

1

2(n− 1)

n∑
i=2

(
xi − xi−1

)2
(10)

σ̂2
f =

1

2(n− 1)

n∑
i=2

(
f(xi) − f(xi−1)

)2
(11)

However Gasser et al. demonstrated that the GSJ method was more accurate than σ̂2
f .3 Additionally σ̂2

x

will not provide useful insight when x has been systematically spaced. It is worthwhile to note that Altman
and Paulson provided an alternative derivation for the GSJ method when the spacing between x points is
consistent.6 Hart stated in Ref. 4 that his generalized method is closely related to the cubic spline method
created by Munson and Jernigan.7 Expansions of the GSJ method could be created using higher order
(quadratic, cubic) interpolations between consecutive data points.

E. F-test and lack-of-fit

The F-test represents a statistical test for investigating lack-of-fit. Essentially F represents our test statistic,
which will be used to determine whether or not a model is adequate with the provided data. A classical
lack-of-fit test categorizes the error resulting from either lack-of-fit or pure error.2 Lack-of-fit error refers
to the error between the model and true function. While pure error represents the inherent error from the
noise (or scatter) within the data. Using these principles, the F -statistic can be generalized as the the ratio
of variances

F ≈ σ̂2

σ̂2
e

≈ σ̂2

σ̃2
(12)

where the unbiased estimate of variance is compared to the estimated variance of noise within the data.
The F -statistic follows the F(X;n−nβ , n−1) distribution where n represents the number of data points

and nβ represents the number of model parameters. The null hypothesis H0 is constructed assuming that
there is no lack-of-fit, and the model is adequate given the scatter in the data. For this hypothesis, the
P-value is obtained by taking the complementary cumulative distribution of F(F ;n − nβ , n − 1). The null
hypothesis is accepted when

H0 : P-value > 0.05 (13)

and the P-value is greater than some level of confidence, which conventionally is 0.05 for significance.
A rejected null hypotheses implies that the model poorly describes the data. The null hypothesis is

rejected for large F values, where the majority of variance is characterized from the inability of the model
to fit the data. Alternatively all of the modeling variance could be equal to the variance from noise in the
data, or F = 1. When F = 1 the model is accepted, because it is assumed that the only error in the model
originates from the inherent noise in the data. It is possible for the F -statistic to be less than 1, because the
estimated variance from noise may be greater than the unbiased variance (particularly when there is error
in the estimated variance). The models are usually accepted for a small test statistic where F < 1 because
the error is less than the approximated scatter within the data.

III. Demonstrated Convergence of Statistical Methods

A simple example was created to demonstrate the convergence behavior of the variance estimators and
lack-of-fit test. Data is sampled from the equation

f(x) = −1.4 + 1.5x+ 190.3x2 (14)

with the addition of random Gaussian noise that follows the normal distribution of N(µ = 0, σ2 = 25).
The number of data points was increased to demonstrate the convergence behavior. The data points xi
are selected at random from 0 ≤ xi ≤ 1. The least squares method is used to fit polynomials with degrees
ranging from zero to five to the data. With the Hart method, it is also important to understand the effect of
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the chosen regression model on the estimated variance. Polynomials with degrees three to five were chosen
to provide insight on overfitting the true function. A k degree polynomial is expressed as

f̂(x) =

k∑
j=0

βjx
j (15)

where the βj parameters are determined from the least squares fit. Examples of polynomial fits for 10, 20,
and 200 data points can be seen in figure 2.
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(c) 200 data points

Figure 2. Constant, linear, and quadratic polynomial fits for 10, 20, and 200 data points.

A. Variance Estimator Convergence

The estimated variance from noise for the GSJ and Hart methods are compared to the variance of the added
noise randomly drawn from the normal distribution. It is the intention of this comparison to demonstrate the
accuracy of the estimated variance from noise for a simple data set. The estimated variances are presented in
table 1. For a small number of points the GSJ method does a poor job at estimating the variance of the noise
in the data. However as the number of data points increases, the accuracy of the GSJ method improves. The
same trend is observed with the Hart method, in which the number of data points improved the accuracy of
the estimated variance of noise. The Hart method was able to estimate the noise with reasonable accuracy
when using higher degree polynomials and only 10 data points. For this example the Hart method using
the 4th degree polynomial produced the most accurate estimation of the variance from noise in the signal.
Lastly it is worthwhile to note that even with 20,000 data points, the estimated variance from all methods
converged to 25.3 despite having a true variance of 25.0. This discrepancy looks worse as a variance than
as a standard deviation because of the squared term. If standard deviations were considered, the estimated
standard deviation would be 5.03 and the true standard deviation would be 5.0.

It was possible the random spacing of the x data points influenced the performance of the GSJ variance.
To demonstrate this affect, the GSJ variance was recalculated for linearly spaced x data points chosen from
0 ≤ xi ≤ 1. The noise from the normal distribution was preserved from the previous example. The results
of the linearly spaced x values on the GSJ variance is presented in table 2. The GSJ method estimated
the variance from noise more accurately when using linearly spaced data points as opposed to the randomly
selected data points. This likely occurs because the linear approximation between three far points is much
worse than three close data points. Despite improving, the GSJ variance estimate did a poor job at estimating
the noise with few data points.

B. Lack-of-fit Convergence

The F -statistic and P-values were calculated for the previous example of fitting various degree polynomials
to quadratic data with normally distributed noise. The unbiased estimate of variance σ̂2 for the model fits
are seen in table 3. The F -statistic and P-value were calculated for each degree polynomial fit. The results
using the GSJ method are shown in table 4 and the Hart method in table 5. In general the GSJ and Hart
methods are in agreement with accepting and rejecting models based on the lack-of-fit test. Additionally the
GSJ and Hart methods converge to the same F -statistic values for this example when n = 2000 data points
are used. The only disagreement between the GSJ and Hart methods occur for the 1 degree polynomial fit
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Table 1. Demonstrated convergence of the GSJ and Hart variance from noise
estimation methods for the quadratic example with 10 through 20,000 data
points.

Variance metric n = 10 n = 20 n = 200 n = 2000 n = 20, 000

GSJ σ̂2
e 271.4 177.5 27.1 23.8 25.3

0 degree Hart σ̃2 260.1 171.4 27.0 23.8 25.3

1 degree Hart σ̃2 37.6 60.4 25.6 23.8 25.3

2 degree Hart σ̃2 30.4 27.1 25.3 23.9 25.3

3 degree Hart σ̃2 25.7 27.2 25.3 23.9 25.3

4 degree Hart σ̃2 23.2 24.8 25.3 23.9 25.3

5 degree Hart σ̃2 25.9 25.6 25.3 23.9 25.3

True σ2 from noise* 23.58 24.1 24.7 24.7 25.0

* True noise refers to the variance calculated from the samples pulled from the normal
distribution. The normal distribution used had a σ2 = 25.0, however the actual variance
of these samples will differ when n is small.

Table 2. Demonstrated convergence of the GSJ when data points are linearly
spaced from 0 ≤ xi ≤ 1.

Variance metric n = 10 n = 20 n = 200 n = 2000 n = 20, 000

GSJ σ̂2
e 255.6 93.8 26.0 24.6 25.2

True σ2 from noise* 23.58 24.1 24.7 24.7 25.0

* True noise refers to the variance calculated from the samples pulled from the normal
distribution. The normal distribution used had a σ2 = 25.0, however the actual variance
of these samples will differ when n is small.

when n = 20, in which the GSJ method accepts the model while the Hart method rejects the model. It is
noted that the GSJ method in this case is on the boundary of the 95% confidence hypothesis test, and that
the model would have been rejected if 99% confidence hypothesis test was used.

Table 3. Unbiased estimate of variance σ̂2 for various degree polynomial fits
to the true quadratic function which included normally distributed noise. The
bottom row of the table shows the variance of the normally distributed noise
in the data.

Degree n = 10 n = 20 n = 200 n = 2000 n = 20, 000

0 2008 3307 3571 3321 3291

1 85.9 384 208 237 227

2 27.3 25.5 24.9 24.7 25.0

3 21.3 26.2 25.0 24.7 25.0

4 21.8 22.7 25.1 24.7 25.0

5 26.3 22.4 24.7 24.7 25.0

True σ2 from noise* 23.58 24.1 24.7 24.7 25.0

* True noise refers to the variance calculated from the samples pulled from the normal
distribution. The normal distribution used had a σ2 = 25.0, however the actual variance
of these samples will differ when n is small.
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Table 4. GSJ estimated variance used to calculate the F -statistic and P-value for the example quadratic with 10 through 20,000 data points. P-values greater
than 0.05 indicated that the data is adequately described by the degree of polynomial fit.

Degree n = 10 n = 20 n = 200 n = 2000 n = 20, 000

0 F = 7.40,P = 0.03 F = 18.6,P = 0.00 F = 132,P = 0.00 F = 139,P = 0.00 F = 130,P = 0.00

1 F = 0.30,P = 0.94 F = 2.16,P = 0.05 F = 7.67,P = 0.00 F = 9.94,P = 0.00 F = 8.96,P = 0.00

2 F = 0.10,P = 1.00 F = 0.14,P = 1.00 F = 0.92,P = 0.73 F = 1.04,P = 0.22 F = 0.99,P = 0.79

3 F = 0.08,P = 1.00 F = 0.14,P = 1.00 F = 0.92,P = 0.72 F = 1.04,P = 0.22 F = 0.99,P = 0.79

4 F = 0.08,P = 1.00 F = 0.13,P = 1.00 F = 0.93,P = 0.71 F = 1.04,P = 0.21 F = 0.99,P = 0.79

5 F = 0.10,P = 0.98 F = 0.13,P = 1.00 F = 0.91,P = 0.74 F = 1.04,P = 0.21 F = 0.99,P = 0.79

Table 5. Hart estimated variance used to calculate the F -statistic and P-value for the example quadratic with 10 through 20,000 data points. P-values
greater than 0.05 indicated that the data is adequately described by the degree of polynomial fit.

Degree n = 10 n = 20 n = 200 n = 2000 n = 20, 000

0 F = 7.70,P = 0.02 F = 19.3,P = 0.00 F = 132,P = 0.00 F = 139,P = 0.00 F = 130,P = 0.00

1 F = 2.27,P = 0.12 F = 6.37,P = 0.00 F = 8.12,P = 0.00 F = 9.94,P = 0.00 F = 8.96,P = 0.00

2 F = 0.90,P = 0.55 F = 0.94,P = 0.55 F = 0.98,P = 0.55 F = 1.04,P = 0.22 F = 0.99,P = 0.79

3 F = 0.83,P = 0.58 F = 0.96,P = 0.53 F = 0.99,P = 0.54 F = 1.04,P = 0.22 F = 0.99,P = 0.79

4 F = 0.94,P = 0.50 F = 0.92,P = 0.56 F = 0.99,P = 0.52 F = 1.04,P = 0.22 F = 0.99,P = 0.79

5 F = 1.02,P = 0.44 F = 0.87,P = 0.60 F = 0.98,P = 0.56 F = 1.04,P = 0.21 F = 0.99,P = 0.79
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It is important to remember that both the GSJ and Hart methods are estimations of the variance from
the scatter in the data. When there is a limited number of data points, the methods may yield different
results. However the example problem demonstrated that both the GSJ and Hart methods converge to the
same values given a large number of data.

The F -statistic is useful in determining whether a model adequately describes data. In the quadratic
example with added normally distributed noise, the F -statistic demonstrated that constant (degree 0) and
linear (degree 1) models were inadequate to represent the quadratic data. The models were inadequate
because a significant portion of the unbiased variance σ̂2 originated from the model’s inability to fit the data
and not from the inherent variance (from noise) in the data. It is worthwhile to note that the F -statistic
does not provide insight about over fitting, since the polynomials with degrees 3-5 were always accepted with
the F -statistic.

IV. Application to Material Parameter Identification

The F -statistic is applied to a material calibration example of Jekel et al., in which a non-linear or-
thotropic material model is fit to uniaxial test data using non-linear regression.8 There are three distinctive
FE models, one for the warp, fill, and 45◦ bias uniaxial tests. Each FE model is compared to the correspond-
ing uniaxial experimental data. The intention is to apply the F -statistic to investigate the lack-of-fit for a
practical material calibration problem. In terms of material calibration, the F -statistic and lack-of-fit tests
represent a useful tool on demonstrating whether the model would improve the most from improvements to
the FE model, or from reducing the variance in the experimental data.

Both the GSJ and Hart methods were used to investigate the lack-of-fit. It’s worthwhile to note that it is
significantly simpler to apply the GSJ method, as the Hart method requires a linearized regression matrix.
Since this is a non-linear regression problem, a linearized regression matrix was approximated using finite
differences following Coppe et al.5

The lack-of-fit results are presented in table 6, where the F -statistic and P-values were calculated for
the non-linear orthotropic model on two different PVC-coated polyesters. The Hart and GSJ methods
were in agreement for all cases, where only the CF0700T 45◦ bias model was deemed inadequate with the
provided data. It is interesting to note that this particular model failed the lack-of-fit test, despite being
a relatively good fit to the data. For all of the other 5 examples, the lack-of-fit tests demonstrated that
the models adequately described the test data. An accepted lack-of-fit test (P-value > 0.05) would indicate
that the variance within the experimental data should be reduced in order to improve the overall FE model.
Alternatively a rejected lack-of-fit test (P-value ≤ 0.05) would suggest improvements like using a material
model that more accurately represented the experimental response.

Table 6. F -statistics and P-values (model is accepted when P > 0.05) for the non-linear orthotropic material
model on two types of PVC-coated polyester.

Material Method Warp Fill 45◦ bias

CF0700T GSJ F = 0.40,P = 1.00 F = 0.85,P = 0.73 F = 1.59,P = 0.00

CF0700T Hart F = 1.35,P = 0.14 F = 1.20,P = 0.25 F = 2.79,P = 0.00

VALMEX R© 7318 GSJ F = 0.46,P = 1.00 F = 0.98,P = 0.53 F = 0.84,P = 0.79

VALMEX R© 7318 Hart F = 1.28,P = 0.18 F = 1.04,P = 0.45 F = 0.86,P = 0.77

The fit of the CF0700T 45◦ bias test data and FE model is shown in (a) of figure 3, while (b) shows the
VALMEX R© 7318 45◦ bias fit. In both cases the FE model appears to capture the experimental response well.
One way to qualitatively investigate lack-of-fit is to plot the residuals e of the model. If a model has lack-of-
fit, there will be a systematic departure in the residual plot. Alternatively if a model has no lack-of-fit, the
residual plot will appear as random noise. To visualize this description, the residual plots from the 45◦ bias
test direction is seen in figure 4 for the two types of PVC-coated polyester. The CF0700T 45◦ bias test
is shown in (a) where the systematic departure indicates that lack-of-fit is present. The VALMEX R© 7318
45◦ bias test is shown in (b), where the inherent randomness (especially at high displacements) indicates
inherent variability in the experimental data. Patterns in the residual plot can be an indication of a case
where it is best to improve the model. While a zero centered residual plot with random scatter could indicate
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lack-of-fit.

0 2 4 6 8 10

Virtual Strain Gauge Displacement, mm

0

200

400

600

800

1000

Lo
ad

,N

45◦ bias data
FE model

(a) CF0700T 45◦ bias test
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(b) VALMEX R© 7318 45◦ bias test

Figure 3. The experimental data and final FE model results. The accuracy of the FE model depends on the
material model and the uncertainty in the experimental data.

The CF0700T 45◦ bias test was described as an exceptionally good fit because the average residual was
small relative to the data values. The residuals were on the order of 20 N, while the data had a maximum
value around 1200 N. This demonstrates an example where the lack-of-fit test indicates that an existing model
could be improved, despite being already considered a good fit. In this case a second order polynomial was
used for the shear moduli and potentially a higher order polynomial would allow the model to better match
the experimental response.
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(b) VALMEX R© 7318 45◦ bias test

Figure 4. Residual plots of 45◦ bias uniaxial test for two different PVC-coated polyesters. In (a) the lack-of-fit
test was failed, while (b) passed the lack-of-fit test.

The Poisson’s ratio for the CF0700T PVC-coated polyester is now considered as another material pa-
rameter calibration example.8 A linear trend was fitted to the Poisson’s ratio that varied with respect to the
load, as seen in figure 5. A lack-of-fit test (F ≈ 0.9) indicates that the linear trend is an accepted model. The
lack-of-fit test indicated that the major source of the variance was from the experimental data. In this case
the only way to improve a trend to the linear Poisson’s ratio model would be to reduce the variance in the
experimental data. Attempting to use a better model for the trend, such as quadratic or cubic polynomials,
will not gain much improvement in the overall accuracy. For instance the unbiased variance for the linear
trend is σ̂2 = 5.7 × 10−4, quadratic trend is σ̂2 = 5.7 × 10−4, and for a cubic trend is σ̂2 = 5.6 × 10−4.
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Figure 5. Poisson’s ratio as a function of the applied load for CF0700T PVC-coated polyester, with a linear
trend fitted to the data.

It is worthwhile to consider that for these examples, conclusions as to whether to improve the model
or data could have been drawn without a lack-of-fit test using visual methods. Though the lack-of-fit test
serves as a basis to aid such decisions. Additonally it may be difficult to visualize high dimensional data,
and thus it is anticipated that extensions of the lack-of-fit in high dimmensions may be useful when dealing
with data that is difficult to visualize. Unfortunately the GSJ and Hart methods as proposed will require
modification to be extended to higher dimensions. If true replicates exist, a classical lack-of-fit test can be
applied following Myers et al. regardless of the dimension of data.2

V. Conclusion

A generalized lack-of-fit test was described that could be applied to experimental data when calibrating
a material model. The F -statistic represented a comparison of the unbiased estimate of variance to the
estimated noise within the data. Two methods, GSJ and Hart, were used to approximate the variance
from the noise within experimental data for cases without true replicates. The GSJ method can be directly
applied to data, while the Hart method requires a linear regression model. This gives the GSJ an advantage
in simplicity. Though it was shown that the Hart method can be more accurate with fewer data points,
provided that the regression model used closely resembles the true function. The lack-of-fit test can be used
to indicate if the model, or the data has the largest potential for improvement.

The lack-of-fit tests were applied to a material calibration problem, in which a non-linear orthotropic
model was used to describe PVC-coated polyester. It is worthwhile to note that the existing model was
previously considered an excellent fit. Despite this, the lack-of-fit test indicated that one of the experimental
responses was inadequately described by the model. This lack-of-fit could be visualized as a systematic
departure in a residual plot. An interesting take away is that even if a material model is of exceptional fit,
the material calibration parameters may fail the lack-of-fit test. In this case it would be recommenced to
consider improving the model. Alternatively with the Poisson’s ratio example, the lack-of-fit test indicates
that the uncertainty in the experimental data should be reduced in order to predict a better trend.
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