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Tail probability estimation with limited data

My work this summer:
Estimating tail probabilities with limited data 2 ≤ N ≤ 20

Effective on exceedance probabilities on the order of P < 10−2

Challenging to provide conservative, but not overly
conservative estimates
Study performance of sparse-data UQ methods on 16
distributions
Extending these methods to larger samples N ≈ 120
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Limited data methods

1. Tolerance Interval Equivalent Normal (TI-EN)
Construct a Normal distribution to represent sample
This is the same Normal distribution used for Tolerance
Intervals

2. Superdistribution
Constructed from an ensemble of candidate Normal
distributions that are consistent with the sparse samples of
data
Data doesn’t have to come from a Normal distribution to
perform well in conservative tail probability estimation
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Tolerance Interval Equivalent Normal (TI-EN)

Constructs an equivalent normal distribution from a sample
This is the normal distribution used to construct Tolerance
Intervals
Control the conservatism with confidence level

N (µ̃, σ2
EN) (1)

σEN = kσ̃ (2)

µ̃ - sample mean
σEN - equivalent normal standard deviation
σ̃ - sample standard deviation
k - correction factor based on confidence level
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Superdistribution

Figure: Construction of a Superdistribution from a sparse random sample
of N = 4.
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Superdistribution - exceedance probability
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Figure: Predicted probability results from the average from each normal
distribution in the Ensemble of Normals (EON).
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Tail probability study

16 Distributions (8 analytical, 8 empirical)
Generate 10,000 random sets of samples for each distribution
Considering N = 2, 3, 4, · · · , 20 number of samples
Estimate the exceedance probability for each random sample
Quantify the performance of the methods

Accuracy
Reliability
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Analytical distributions
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Figure: Analytical distributions and threshold locations for
EP = 10−3, 10−4, 10−5.
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Empirical distributions
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Figure: KDE fits to empirical data and threshold locations for
EP = 10−3, 10−4, 10−5.
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Example result for P = 10−4 on Exp Distribution.
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Figure: Trade off between accuracy and reliability for low number of
samples. The estimates become worse as the number of samples increase.
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Results of the study

Superdistribution (SD) was generally the most accurate
method with conservative estimates
Often the most accurate and conservative SD (optimal) was
for small sample sizes between N = 2 - N = 5

Results were distribution dependent and threshold dependent
Smaller the exceedance probability the more conservative the
estimates
Reliability and accuracy often decrease as the number of
samples increased

N = 3,P ≤ 10−3: 14 of 16 dists... reliability > 80%
N = 4,P ≤ 10−4: 14 of 16 dists... reliability > 80%
N = 5,P ≤ 10−5: 14 of 16 dists... reliability > 80%
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% of conservative estimates for Superdistribution
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Figure: Reliability decays quickly as the number of samples increases, and
less quickly with increasing order of magnitude of the exceedance
probability.
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Extending to larger sample sizes

The reliability and accuracy of the methods generally decreased as
the number of samples increased.

What to do if you have N ≥ 4 samples???
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Statistical resampling

Reducing bias and variability in tail estimates

Bootstrapping:
combinations with replacement
each new sample has n number of points

Jackknifing:
aggregates the n − 1 sub-sample combinations
predecessor to Bootstrapping
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Generalized Jackknifing applied to limited data

Consider all of the r sized sub-sample combinations
Expressed as n choose r or nCr
Compute the probability in each sub-sample
Estimate results from the average of all estimated probabilities
Total number of combinations:(

n
r

)
=

n!
k!(n − r)! (3)
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Example on Exponential distribution
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Figure: Exponential distribution and threshold locations for
EP = 10−3, 10−4, 10−5.
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Limited data Jackknife results on a single distribution

Error on left (lower is better)
Reliability on right (higher is better)
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Figure: nC4 Jackknife Superdistribution method offers both improved
accuracy and reliability for N ≥ 5. This result is on an exponential
distribution, and the results are distribution dependent.
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Application with left tails on larger data N ≈ 120

Figure: Examples of 4 random sets from the 100.October 2, 2018 18



Methods to consider left tail probability estimation

100 sets of random samples, N = 120 samples per set
Kernel Density Estimation (KDE)

Find optimal bandwidth that maximizes the likelihood
Cross validation grid search

Maximum Likelihood Estimation (MLE)
Finds 5 parameters of the true distribution
Most cases true distribution unknown
Global optimization

Limited data Jackknife technique with Superdistribution
Need to choose appropriate r sub sample size
Compare nC4, nC5, nC6 results
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Each estimated tail probability result
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Summary

Reasonably and reliably estimate extreme tail probabilities
with limited samples
The accuracy and reliability dependent upon: true
distribution, level of exceedance probability, and the number
of samples
Control to how conservative the methods are
Superdistribution (SD) was generally the most accurate
method with conservative estimates

N = 3,P ≤ 10−3: 14 of 16 dists... reliability > 80%
N = 4,P ≤ 10−4: 14 of 16 dists... reliability > 80%
N = 5,P ≤ 10−5: 14 of 16 dists... reliability > 80%

Using SD with Jackknifing improved the conservative
estimates for larger sample sizes beyond the optimal SD
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Backup slides start here

:)
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MLE Fit examples
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Example of right tail thresholds
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Figure: Thresholds of a Weibull distribution which have a right tail
exceedance probability of P = 10−3, 10−4, 10−5.
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Reliability results
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Figure: The nCr Jackknife Superdistribution method appears to be more
reliable than KDE or MLE.
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