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A lot of people are using online dating

Figure 1: In September of 2017, Tinder, the online dating application became
the top grossing app in the iOS store. 1



What is Tinder?

• location based online dating
• presented with singles near
you

• view profiles one at a time
• like or dislike the profile

Tinder sends a notification when
two people like each other, where
they can then message each other.
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The problem

It takes a lot of time to review profiles.

Tinder has a lot of data, and could very well build a model to
automatically like profiles for me.
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Why can’t I just liked everyone?

• Free users get 100 likes a day
• For $10 a month you can get unlimited likes
• You will be penalized by Tinder for not being selective
• Liking all of the profile ruins the Tinder atmosphere
• Still need to filter unnecessary matches
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So it became clear to me

I could use machine learning to automatically review Tinder profiles.

• I had no idea about how to go about doing this
• But I knew that I would need a lot of data
• So I built a custom application to interface with Tinder
• Which created a dataset from all of the profiles that I reviewed
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My dataset of reviewed Tinder profiles at a glance

• 8,545 profiles reviewed
• 2,411 profiles liked
• 38,218 profile images
• 640x640 pixel RGB images
• 1.9 GB of data
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No low hanging fruit

I tried everything and couldn’t find a pattern in my dataset.

Where the profiles I liked random?

Could state-of-the-art techniques in Facial Classification help?
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How I ended up finding a pattern in the data
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Enter FaceNet - A unified embedding for Face Recognition

A 7.5 million parameter neural network of 1.6 GFLOPS to apply facial
classification at scale [3].

• Set a Labled Faces in the Wild (LFW) [2] record with 99.63%
accuracy

• Turns face into a vector of features
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How does FaceNet work? [3]

• L2 norm distance between images of the same face are small
• L2 norm distance between images of different faces are large
• Triplet loss function minimizes the distance between an anchor
and a positive, while maximizing the distance between the
anchor and a negative

• Convolutional neural network (CNN)

Figure 2: Model structure figure from [3].
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Inception ResNet v1 Architecture

Figure 3: ResNet v1 Architecture model weights are a 200mb file. Figure taken
from [4].
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FaceNet implementation at a glance

• Created by David Sandberg
https://github.com/davidsandberg/facenet

• MIT license
• Python + TensorFlow
• Multitask Cascaded CNN for face box detection [6]
• Inception ResNet v1 Architecture [4]
• Training: CASIA-WebFace [5], LFW accuracy: 0.987
• Training: MS-Celeb-1M [1], LFW accuracy: 0.992
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Multitask Cascaded CNN (MTCNN) for face box detection

• Create a new dataset of all the pictures containing only one face
• Crop or enlarge these face to 182x182 pixel images using MTCNN
• Some false positive and false negatives, overall good
• Fortunately 95.1 % of the profiles I reviewed had at least a single
picture with just one face

• Dataset is now 24,486 RGB (182x182x3) images of faces
• 8,130 profiles
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Noise within Tinder One Face dataset

Here are a some of the MTCNN false positives.
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Receiver operating characteristic (ROC)
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Figure 4: ROC and area under curve (AUC) for various classification models
using a 10:1 train:test split. 15



Validation accuracy

101 102 103 104

Number of training profiles

0.3

0.4

0.5

0.6

0.7

Va
lid

at
io

n
ac

cu
ra

cy

iavg Log
iavg NN 2
iavg SVM RBF

Figure 5: Number of correctly classified test profiles / total number of test
profiles as a function of the number of training profiles.
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What does this mean?

• Finally managed to find a pattern!
• 70% accuracy on just 80 profiles with logistic regression model
• Establish a point of diminishing marginal returns
• Class imbalances and weights to Likes and Dislikes
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This is significantly better than randomly liking
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Figure 6: Probability density functions (PDF) for validation accuracy of
classifiers trained on either 10, 20, 40, 81, and 406 profiles.

18



tindetheus - Python command line application

Build personalized machine learning models for Tinder based on
your historical preference using Python.

1. A function to build a database which records everything about
the profiles you’ve liked and disliked.

2. A function to train a model to your database.
3. A function to use the trained model to automatically like and
dislike new profiles.

https://github.com/cjekel/tindetheus
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tindetheus - LIVE DEMO

tindetheus browse

tindetheus train

tindetheus like
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Future work

Reach out to me at cjekel@ufl.edu if you’d like to be involved

• Build pre-trained tindetheus models based on hot-or-not
• Consider more than just faces in the profiles
• NLP possibilities to include bio information
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Everything here was done in Python

• Fall 2017 I created and taught 1 credit
Python course

• Introduced the basic Python syntax
• Covered: matrix operations, plotting,
statistics, optimization, scikit-learn,
& more

• Material available online
https://jekel.me
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Closing details

I created a Python applications for users to build their own
personalized models to Automatically like users on Tinder.

• FaceNet facial classification techniques
• 73% accuracy with training on just 80 profiles
• Various commercial applications
• My paper on this method
https://arxiv.org/abs/1803.04347
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Bonus slides...
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Like accuracy (True positive rate)
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Figure 7: Like accuracy (true positive rate) of classification models as a
function of the number of training profiles.
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Dislike accuracy (True negative rate)
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Figure 8: Dislike accuracy (true negative rate) of classification models as a
function of the number of training profiles.
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