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Reliability Based Design Optimization (RBDO) and Distributions

- The RBDO community often assumes you can identify
statistical distributions

- Itis difficult to identify statistical distributions in practice

- Regulators (e.g. FAA) tell you what to do when you can not
identify the statistical distribution

Perhaps the regulators are more statistically savvy!
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Obtaining conservative failure allowables

- You have performed a handful of tests on a material
- What failure strength do you use? (failure allowable)
- Deal with epistemic and aleatory uncertainty

- How to conservatively estimate the failure strength

- Various tolerance interval methods
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Outline today

1. Conservative estimation of failure strength

2. Non-parametric and Hanson Koopmans tolerance
intervals

3. Simple risk allocation RBDO for UAV redesign
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Conservative estimate of failure strength
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Figure 1: Histogram of 18 tension tests on composite material.
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One-sided tolerance interval to estimate allowable strength
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Figure 2: Estimating the 10th percentile to 95% confidence.
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One-sided tolerance intervals for Aerospace

- st percentile to 95% confidence (A-basis): used in
non-redundant structures

- 10th percentile to 95% confidence (B-basis): used in
redundant structures

- FAA regulations on how to calculate failure strength
allowables

- If distribution is known, easy to calculate!

Charles Jekel - https://jekel.me 6


https://jekel.me

Issues with real test data

It's difficult in practice to identify a known distribution

- You may have too much data

- Tiny deviations from a distribution are enough to reject
that samples come from that distribution

- You may have too little data

I’'m not sure where this sweet spot exists...
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Example with too little data

Consider this sample of 10 (from standard Normal distribution)

x = [0.98, -0.7, 0.95, -1.67, -1.4, 0.73, -0.2, 1.76, 118, 1.62]

Table 1: KS-Test 95% confidence: reject distribution if P-value < 0.05

Distribution P-value Reject?

Normal 0.57 False
Lognormal 0.57 False
Weibull 0.92 False
Gamma 0.52 False

Student's t 0.57 False

The random sample could have come from just about any

distribution!
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Non-parametric order statistic tolerance interval

Order a random sample x as
X1 <X < oo < Xp (1)

then the non-parametric tolerance interval for P and ~
confidence is expressed as

Xi (2)

where i is determined from P and ~

Solves the tolerance interval problem with large samples!
However, it doesn’'t work well with small data.
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Non-parametric failure strength on previous 18 samples
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Figure 3: With just 18 samples, the non-parametric tolerance interval
is limited to certain percentile confidence levels.
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Hanson-Koopmans extends non-parametric for small samples

The tolerance interval is defined as
Xj — b(x; — x;) (3)
where b is solved depending on i,j,P,~v,N
- b has been difficult to solve for (until today...)

- Sporadic use in FAA, SAE, mil-spec...

- Hanson-Koopmans assumes the true distribution is in the
Log-Concave CDF class

- Non-parametric assumes the true distribution is
continuous
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Hanson-Koopmans failure strength of previous 18 samples
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Figure 4: With just 18 samples, the Hanson-Koopmans tolerance
interval can be calculated for any percentile and confidence.
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My tiny Python library for tolerance intervals

https:
//github.com/cjekel/tolerance_interval_py

- Calculate one-sided tolerance intervals for Normal,
Lognormal, Non-parametric, and Hanson-Koopmans
methods

- Calculate Hanson-Koopmans b for any j, N, P, ~

import numpy as np

import toleranceinterval as ti

x = np.random.random(100) # random sample of n=100
# estimate the 10th percentile to 95% confidence
bound = ti.oneside.hanson_koopmans(x, 0.1, 0.95)
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So what is the Log-Concave CDF class?

- Fairly common statistical distribution class

- Includes all: Normal, Exponential, Gumbel, Laplace,
Logistic, Rayleigh, Maxwell, Uniform, Lognormal, and
Pareto distributions

- Also includes subsets of other distributions

- Composite material handbook: composite failure strength
generally follows the Log-Concave CDF class
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Visual example of what is Log-Concave CDF
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Figure 5: The log of the CDF for the Uniform and Normal distributions
is concave, while Student’s t-distribution in convex.
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Risk allocation

Risk allocation
Individual components have different probabilities of failure.

Some potential advantages of risk allocation:

- Lower weight for same system probability of failure

- Lower system probability of failure for same weight
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Application to risk allocation of UAV

- Apply Hanson Koopmans methods to do redesign a UAV

- Initial UAV design assumed components have equal safety
margins (similar to FAA regulations)

- Redesign the wing and horizontal tail to have difference
probabilities of failure
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Initial design of UAV
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Assumptions to setup the risk allocation

The wing and tail failures are assumed to be independent,
thus the system probability of failure is

Pr=1-(—=Pu)(1-P) (4)

where P, and P; are the failure allowables.

The component weight can be assumed to be inversely
proportional to change of failure allowable

o _ T (5)

Un VVI

from changing the skin thickness.
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Simple risk allocation RBDO

- Minimize the weight of the wing and horizontal tail

- By changing the allowable failure strength for each
component

- Such that the system has the same probability of failure

min W = Ww(pwa’YW) + Wt(pta%) (6)
such that: Pr < 0.02 (7)
Yw =yt = 0.95 (8)
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Results when using the Hanson-Koopmans method
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Figure 7: Contour plot of the objective function when using the
Hanson-Koopmans method.
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Results along the constrain boundary
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Figure 8: Line plot of the objective function along the constrain
boundary when using the Hanson-Koopmans method.
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Results comparing initial design to risk allocation

Table 2: Comparison of the UAV specifications from the previous
equal safety margin design and the new RBDO optimal design.

Equal safety margin RBDO RBDO

Hanson-Koopmans Hanson-Koopmans Normal
Ps 0.020 0.020 0.020
Pw 0.010 0.016 0.017
P 0.010 0.004 0.003
Wy, b 1.35 1.30 1.16
wy, b 0.30 0.32 0.27
w, lb 1.65 1.62 1.43
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Lessons from risk allocation

- Lighter UAV for the same probability of failure using risk
allocation

- Risk allocation between Hanson Koopmans and Normal
distribution resulted in similar component failure
probabilities

- Hanson Koopmans UAV was = 15% heavier than using a
Normal distribution
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Overall conclusion

- RBDOs often assume that it is possible to identify
statistical distributions

- Itis difficult to identify statistical distributions

- Regulation (e.g. FAA) have methods when it is not possible
to identify the distribution

- Classes of distributions may be an approach to make
RBDOs more robust
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