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Response Surface Mythology 

• Collection of algorithms and techniques 
related to optimization experimental or 
manufacturing process

• Origins in the 1950s

• In a nutshell
• An experiment or process, where  you don’t 

understand the full physical problem
• You control the variables as best as possible, but 

you don’t fully understand the physics, you get 
highly variable outcomes

• Goal to optimize the process for an outcome
• RSM it the toolset for these problems
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Response Surface Methodology (RSM) Fitting 
smooth surfaces (mostly polynomials) to highly 
variable data

CC BY-SA 3.0 https://en.wikipedia.org/wiki/Response_surface_methodology#/media/File:Response_surface_metodology.jpg
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Why mention Response Surface Mythology (RSM)

• Maybe more relevant to optimizing experimentation rather than 
computer simulations

• Origins of surrogate based optimization of computer simulations

• Pool of literature on

• Sampling techniques

• Regression models

• Statistics of regression models

RSM may be useful in some applications, and the approach is 
in many ways the opposite of Surrogate Based Optimization
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Surrogate Based Optimization [1]

• Focus on the outputs of computer 
simulations

• Accurate, high-fidelity simulations 
are expensive to run, and may not 
provide gradient information

• Desire to optimize these models

• Surrogate model is used as a cheap 
representation of a fidelity model

[Insert image from your 
expensive physical 
simulation that generates 
pretty pictures here]

[1] Nestor V. Queipo, Raphael T. Haftka, Wei Shyy, Tushar Goel, 
Rajkumar Vaidyanathan, P. Kevin Tucker,
Surrogate-based analysis and optimization,
Progress in Aerospace Sciences, Volume 41, Issue 1,
2005,  Pages 1-28,  ISSN 0376-0421, 
https://doi.org/10.1016/j.paerosci.2005.02.001.
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When not to Surrogate Based Optimization

• Cheap analytical functions

• Cost of fitting and evaluating surrogate model is more expensive than 
function evaluation

• Cheap derivative information
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When to Surrogate Based Optimization

• Expensive functions

• Cost of fitting and evaluating surrogate model is much cheaper than a 
function evaluation

• Lack of cheap derivative information

• Intention to re-use or re-run many future similar optimizations

• Gaining more insight into optimization problem

• You have no idea where an optimization should start
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Basic Surrogate Optimization  Algorithm
Generate data 

from a true 
function (DOE, 
LHS, random 

points)

Train a surrogate model

Find minimum of 
surrogate

Evaluate true function 
at surrogate minimum

Convergence 
Check?

Report minimum 
of true function, 
save surrogate 

model and data

Update data

Retrain surrogate 
model

NOYES
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Trivial to parallelize
Generate data 

from a true 
function (DOE, 
LHS, random 

points)

Train a surrogate model

Find minimum of 
surrogate

Evaluate true function 
at surrogate minimum

Convergence 
Check?

Report minimum 
of true function, 
save surrogate 

model and data

Update data

Retrain surrogate 
model

NOYES
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Mostly serial loop, but parallelization possible
Generate data 

from a true 
function (DOE, 
LHS, random 

points)

Train a surrogate model

Find minimum of 
surrogate

Evaluate true function 
at surrogate minimum

Convergence 
Check?

Report minimum 
of true function, 
save surrogate 

model and data

Update data

Retrain surrogate 
model

NOYES
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How to find the minimum of your surrogate? 
Train a surrogate model

Find minimum of 
surrogate

Evaluate true function 
at surrogate minimum

Convergence 
Check?

Update data

Retrain surrogate 
model

NOYES

• Use your favorite 
NLP routine
• (BFGS, SQP, MMA)

• Use metaheuristics
• (Genetic algorithm, 

partial swarm, 
differential 
evolution)

• Monte Carlo or 
pure random search

• Be very thorough!
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Minimum of surrogate occurs at existing data!?
Train a surrogate model

Find minimum of 
surrogate

Evaluate true function 
at surrogate minimum

Convergence 
Check?

Update data

Retrain surrogate 
model

NOYES

• The minimum of an 
interpolation 
surrogate can often 
be at an existing 
data point!

• Observed this 
behavior with 
Radial Basis 
Functions

• Need more data!
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Other issues with the Basic algorithm

• How do you get convergence guarantees?

• Minimizing surrogate does not improve surrogate model

• How to parallelization serial loop

• Dealing with constraints?

• Dealing with more than one objective?
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Get guarantees on local convergence

• Fig 8 from [1]

• Poll phase looks at extending 
from best solution

• Small steps in all major 
directions

• Poll can be thought of as central 
difference steps

• Poll answers whether we have 
local optimum

• Search phase minimizes 
surrogate model
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Successive Response Surface Method (SRSM)

• Local optimization algorithm

• Domain reduction technique

• This algorithm is based on Response Surface Methodology (RSM)

• 20 year commercial usage in LS-OPT for optimizing expensive dynamic 
finite element analysis [2]

16

[2] Stander, N. and Craig, K.J. (2002), "On the robustness of a simple domain reduction 
scheme for simulation‐based optimization", Engineering Computations, Vol. 19 No. 4, 
pp. 431-450. https://doi.org/10.1108/02644400210430190

https://www.emerald.com/insight/search?q=Nielen%20Stander
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https://doi.org/10.1108/02644400210430190


Domain reduction techniques

• Figure from [2]

• Reduce the boundary of search space

• Successive iterations reduce the design domain
17



D-Optimal vs Latin Hypercube (LHS) DOEs

• Figure from [3]

• Design of Experiments 
(DOE)

• D-Optimal
• Variance optimal design

• Samples placed on 
boundaries

• Model specific

• LHS: Space filling 
design
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[3] Goel, T., Haftka, R.T., Shyy, W. and Watson, L.T. (2008), Pitfalls of using a single 
criterion for selecting experimental designs. Int. J. Numer. Meth. Engng., 75: 127-155. 
doi:10.1002/nme.2242 



Successive Response Surface Method (SRSM)
Generate 

D-Optimal Design (DOE)

Fit linear regression 
model

Find minimum of model

Convergence 
Check?

Perform 
verification run 

of solution
Domain reduction: 

Pan, Zoom, or Pan & 
Zoom

Update boundaries

NOYES
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Efficient Global Optimization (EGO)

• Surrogate based global  
optimization algorithm

• Uses adaptive sampling

• Bayesian optimization

• Expensive computer simulations

• Typically use Gaussian process (or 
Kriging) surrogates

• Popular for tuning hyper 
parameters of ML models

[4] Jones, D.R., Schonlau, M. & Welch, W.J. Efficient Global Optimization of Expensive 
Black-Box Functions. Journal of Global Optimization 13, 455–492 (1998). 
https://doi.org/10.1023/A:1008306431147
Car crash figures from -> [5] Marzougui D, Kan CD, Opiela KS. Crash test & simulation 
comparisons of a pickup truck & a small car oblique impacts into a concrete barrier. 
InThe 13th International LS-DYNA Users Conference, Dearborn, MI 2013. 20
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EGO open source implementations

Name License Technologies URL

GPyOpt BSD 3 Clause Python https://github.com/SheffieldML/GPyOpt

MOE Apache v2 C++, Python https://github.com/Yelp/MOE

Spearmint Non-commercial Python https://github.com/JasperSnoek/spearmint

SMT BSD 3 Clause Python https://github.com/SMTorg/smt

GPflow Apache v2 Python, TensorFlow https://github.com/GPflow/GPflow

Bayesopt GNU Affero v3.0 C++, Python https://github.com/rmcantin/bayesopt
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Gaussian Process (GP) model

• Right show GP fit to select Data

• Line shows expected value

• Gray area shows 95% confidence 
region

• Prediction variance is normally 
distributed

• PDF for uncertainty of predictions!

• Recall what I said about the 
minimum of interpolation models is 
usually at an existing point!

PDF for f(x=6) 
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Gaussian Process (GP)
Probability Density Function (PDF)



Global optimization balance between 
exploitation & exploration

• Exploitation

• Local improvements

• Small improvements from our best solution

• Genetic algorithm, offspring from 2 good parents

• Exploration

• Global improvements

• Improvement across entire domain

• Genetic algorithm, offspring from random mutation
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Exploitation

Looking for 
improvement in 
the vicinity of our 
Present Best 
Solution (PBS) 
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Exploration

Search to reduce 
uncertainty!

Where model’s 
variance is largest
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Expected Improvement (EI) strikes balance!

• EGO maximizes the EI to 
select the next point to 
sample

• How much do we 
anticipate upon improving 
from our Present Best 
Solution (PBS) ?

• EI reflects the probability 
that the optimizer 
improves upon PBS

[ ( )] [max( ,0)]PBSE I E y Y −x

ˆ ˆ
ˆ[ ( )] ( ) PBS PBS

PBS

y y y y
E I y y s

s s


− −   
= −  +   

   
x

Figure and eqns. From Rafi Haftka’s VVUQ lecture on Kriging and EGO, University of Florida. 
https://mae.ufl.edu/haftka/vvuq/ 26



Expected improvement at x=6

PBS

PDF for f(x=6) 

ˆ ˆ
ˆ[ ( )] ( ) PBS PBS

PBS

y y y y
E I y y s

s s


− −   
= −  +   

   
x

Expected value

Standard error
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Present Best Solution (PBS)
Probability Density Function (PDF)



Efficient Global Optimization (EGO)
Generate data 

from a true 
function (DOE, 
LHS, random 

points)

Train a GP model

Find maximum 
Expected Improvement

Evaluate true function 
@ EI maximum

Convergence 
Check?

Report minimum 
of true function, 
save GP model 

and data

Update data

Retrain GP model

NOYES
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Design of Experiments (DOE)
Latin Hypercube Sampling (LHS)
Gaussian Process (GP)
Expected Improvement (EI)



Example: Iteration 1 (left), Iteration 2 (right)

Exploitation Exploitation 29



Example: Iteration 3 (left), Iteration 4 (right)

Exploration Exploitation 30



Example: Iteration 5 (left), Iteration 6 (right)

Exploration Exploration 31
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Example: Iteration 19 (left), Iteration 20 (right)

Exploration Exploration 33



Efficient Global Optimization (EGO) Issues

• Final local convergence may take a long time
• Similar for all global optimization algorithms

• Consider using local optimizer from EGO result

• How to budge total EGO function evaluations? 
• Good starting point is half of your budge to DOE

• Long serial loop
• Many parallelization adaptations…

• Parallelized EGO might always perform worse per function evaluation, but 
faster real end user time

• EGO is prohibitively costly on cheap functions
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Efficient Global Reliability Analysis (EGRA)

• Extension of EGO to reliability analysis 
problems

• Equations from [6]

• Investigates maximizing Expected 
Feasibility

• Final GP model used to evaluated system 
probability of failure (which would be 
impossible using numerical model)

• Sandia DAKOTA UQ implementation 
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[6] Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
B. J. Bichon, M. S. Eldred, L. P. Swiler, S. Mahadevan, and J. M. McFarland
AIAA Journal 2008 46:10, 2459-2468 

Constraint

Expected Feasibility



What did I talk about today?

• Response Surface Methodology as a traditional approach to minimize 
experiments and processes

• Basic surrogate based optimization algorithm and issues
• Training and evaluation of your surrogate should be orders of magnitude 

cheaper than your function evaluation

• Successive Response Surface Method (local optimizer)

• Efficient Global Optimization (global optimizer)
• Most popular surrogate based optimization algorithm

• Adaptative sampling technique

• Many variants, including Efficient Global Reliability Analysis
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Shape Optimization

• Objective: minimize 
displacement gap and 
contact pressure variance

• 2 Design Variables

• Implicit non-linear FE 
program

• Non-linear hyperplastic 
material model

• Contact: self, and rigid body
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Different possible geometry with automatic 
meshing with nominal element size

38
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Function Evaluation Procedure

• Open Abaqus sketch and change dimensions

• Generate new mesh

• Write Abaqus input file and close Abaqus

• Submit Abaqus input file

• Verify that Abaqus solver completely successfully

• Run Abaqus post processing script to export distance and contract 
pressure

• Calculate objective function in Python from exported data
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Run 3 different optimization algorithms

• L-BFGS-B
• Popular local optimize
• Uses finite differences to approximate gradients
• Limit of 15 function evaluations

• Efficient Global Optimization (EGO)
• Uses Gaussian Process model
• 7 Latin Hypercube samples
• 8 Optimization Iterations

• Radial Basis Function (RBF) Based Surrogated Optimization
• Principles from today
• 7 Latin Hypercube samples
• 8 Optimization Iterations
• https://github.com/cjekel/sbopt
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Optimization results

43

• Function Evaluations against 
Objective Value

• Efficient Global Optimization 
(EGO) had best function 
value

• L-BFGS-B massive 
improvement after finite 
differences

• More or less all of these 
produce the same design



Resulting Surrogate Models

44

• The L-BFGS-B results wouldn’t give us a good surrogate

• Use surrogate model to understand the design domain



There are  many ways to solve a problem…

• Advantages of L-BFGS-B (gradient based optimizer)
• Local convergence guarantees

• Deterministic from starting point

• Advantages of the Surrogate Based Optimization
• Creates database that can be used to further understand problem

• Potential to re-use simulation results for another objective

• Visualization of the optimization problem

• Bypass local minimum
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