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What are Richtmyer-Meshkov or Rayleigh-Taylor instabilities?

Snapshots of density in time increments of 0.1μs from left to right as an RMI forms. 

§ Rayleigh–Taylor instability occurs at an interface of two different densities [2]
— Water suspended above oil

§ Richtmyer-Meshkov Instability (RMI) is impulsively accelerated
— Two substances with different density
— Some initial small perturbation between materials
— Shock wave through interface causes large “jet-like” growths
— Various importance and interest (e.g. ICF at NIF [1] [3])

§ Our project seeks to ‘control’ RMI (PI Jon Belof)
— State of the art experiments and computations
— Machine Learning to predict RMI
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Various Impact experiments to design for RMI 

§ Seeking designs that maximize RMI

§ Also attempting to mitigate known RMI

§ Current ideas

Double wave targets

Impactor Target
velocity

Double wave targets Graded buffer

velocityvelocity velocity
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Simulated RMI at the same impact velocity
Changing impact materials and initial amplitude
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How well do simulations agree with experiments?

Comparison with sinusoidal wave.

§ HEAF gas gun experiments at LLNL
— 9cm diameter
— Hector Lorenzana, Jeff Nguyen, Mike Armstrong
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A parameterized impactor simulation to study RMI

§ 3 parameters to change
— Changes perturbation in ”Target”
— B, Q, S

§ Machine learning ready LLNL tools!
— MARBL / BLAST: ALE Hydrodynamics [4] [5]
• https://computing.llnl.gov/projects/blast

— Ascent: fast ray tracing ‘images’
— Merlin: HPC workflow management

Materials of simulation
— Copper impactor, high initial velocity
— Lucite, used to fill in target’s perturbation
— Copper target, zero initial velocity
— Air

https://computing.llnl.gov/projects/blast
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Machine learning model overview 

Machine 
Learning Model

§ Model predicts full RMI formation
— Input: Initial conditions
— Output: Full field response 

Entire time dependent 
density field prediction

3 input parameters defining 
initial conditions

(perturbation in green target)

§ Why do this?
— Use ML model to quickly explore designs
— Optimization on the ML model is fast
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Machine learning dataset at a glance

§ For the three parameter study
— 1,600 simulations
• 600 Lassen/Sierra node hours

— 51 times steps per simulation
— 5 output fields
• Density
• Velocity X & Y
• Energy
• Materials

— 1024 x 1024 “pixels”
— 427,819,008,000 single precision floats
— 1.6 TB

§ Plan to release open datasets!
— Please reach out to be notified
— jekel1@llnl.gov

143 - 12 GB h5 files
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Node

Distributed data model training paradigm

GPUs

GPUs

GPUs
Dataset

Training Data: 1461 Sims
Test Data: 165 Sims

3 fields: Density and Velocity

Total Floats: 260,862,640,128
Size: 0.96 TB

§ We can train the ML model in one 
hour using 160 GPUs

§ Dataset split among multiple nodes

§ Each GPU
— receives unique fraction of dataset
— Duplicate copy of model and optimizer
— MPI syncs model and optimizer states

§ GPU memory limited
— Can only generate N number of  

1024x1024 ‘images’ at a time
— More GPUs -> faster training and inference 

throughput
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Simultaneous training of separate models for each field

Density 
Model

Velocity x 
Model

Velocity y 
Model

Outputs

[B, Q, S, time]

Input

Input defines shape of red interface

§ 3 models

§ 1 optimizer

§ 1 loss 
function

§ 4 inputs

§ 1024x1024 
output for 
each field

Optimizer
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The ML model for each physical field
See ‘Generator’ model from DCGAN [6]

Trainable parameters: 15,407,040
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Best left-out ‘test’ simulation comparison

§ Lowest L1 error in test set

§ Epoch 500

§ MARBL simulation top

§ ML prediction bottom

MARBL 
simulation

ML Model
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Worst left-out ‘test’ simulation comparison

§ Highest L1 error in test set

§ Epoch 500

§ MARBL simulation top

§ ML prediction bottom

MARBL 
simulation

ML Model
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Interactively exploring the ML model in the entire design space 

§ Live visualization from ML model
— B, Q, S, and Time are the inputs
— Density field is shown as ML model output

§ Corners of design space yield worst visual

§ From HPC dataset to laptop visualization

§ Quickly step forward and backward in time
— 7 ms for new prediction using NVIDIA V100
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How well can you trust the ML model’s predictions?

§ Trying to use first principles 
to infer the accuracy of our 
predictions
— Continuity equation
— Conservation of mass
— Conservation of momentum

§ These metrics can be 
calculated without running 
a simulation

§ Simulations are all closed 
domain, so these equations 
should be preserved



16
LLNL-PRES-835760

§ Continuity Equation

§ Mass and Momentum as functions of time

§ Variance of mass and momentum

How well can you trust the ML model’s predictions?
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§ Trying to use first principles 
to infer the accuracy of our 
predictions
— Continuity equation
— Conservation of mass
— Conservation of momentum

§ These metrics can be 
calculated without running 
a simulation

§ Simulations are all closed 
domain, so these equations 
should be preserved
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Correlation plot of MAE vs Continuity Equation Violation (L1)
on left-out simulations

§ Strong correlation would give us 
some predictive capability

§ This is not good enough!
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Physics informed training via soft constraint

§ What happens if you put the continuity equation violation into the 
loss function? [7]

§ Training is very difficult
— The results are sensitive to your penalization parameter
— Mean absolute error (L1) plus penalized continuity equation violation 
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Training loss curves with and without physics-guided loss

Mean absolute error loss With continuity equation violation

Continuity equation violation (RED) is much better in training when added as a loss function. 
Errors in density and velocity were relatively the same.
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Left-out correlation with and without physics-guided loss

Mean absolute error loss With continuity equation violation

Continuity equation violation is much better with continuity equation penalty (right),
however MAE error is relatively unchanged. 
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Best left-out simulations with and without physics-guided loss

Mean absolute error loss With continuity equation violation

Similar level of detail on these different predictions.
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Conclusions

§ ML modeling of RMI hydrodynamic simulations
— Predictions are 10,000 times faster than simulation
— allows for quick visualization of a design space
— models can be ‘run backwards’ and inverted

§ Using conservation laws to infer deep learning ML model accuracy
— Strong correlation early in training
— Weak correlation with finalized models

§ Continuity equation penalty into loss function
— Reduced continuity equation violation
— Did not improve on prediction accuracy

§ Open datasets and code coming!

§ Slides will go live on https://jekel.me/cv under “Presentations”

https://jekel.me/cv
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Layer by layer progression
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More pixels gave us much more detail
but significantly increase computation demand

1024x1024 256x256

Lowest MAE from each left-out ’test’ set shown
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Dataset
Training Data: 1461 Sims

Test Data: 165 Sims
2 fields: Density and Velocity

Total Floats: 171,127,934,904
Size: 685 GB

Data compression of the ML model (for two fields)

§ 1626 simulations

§ 171 billion floats

§ Exported model is 178 MB

§ 4,000 to 1 compression

§ Brings data visualization from HPC 
world to laptop world

§ With losses to accuracy/detail
ML Model


