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Introduction

= Work done on LDRD 20-ERD-020 Surrogates for Lattices (Seth Watts PI)
= Kenny Swartz, Dan White, and Seth Watts have been tremendously helpful

= Topics for today
— What’s been done so far:
« Why we are doing this
« Multiscale topology optimization
« Homogenization databases
— Work in progress:
« Machine learning material models

« C++ implementation

= Very much want feedback on work in progress!
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Additive manufacturing advancements
create interesting design problems

= 3D print unit cell microstructures

— Octet truss lattice

— Density control by changing rod radii

Hierarchical lattice network Hierarchical unjt cg|l

5mm 500 um

= Lattice of unit cells
— 3D printed with different radii
— Functional graded density

= Design entire structures from lattices

— How to change all of the rod radii to give
optimal structures?

Hierarchical metamaterial

— Design possibilities exceed our intuition
— 100x50x20 = 100,000 different unit cells

Figured modified from Zheng et al. [1].
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Density based topology optimization to find optimal designs

Topology optimization has been a way to design Hli]fl fT’U,
complex structures that exceed our intuition p

Classical Finite Element Method

— Linear static loads
— Small strains

subject to

Givens: domain and boundary condition

Problem: find the best placement of material K(P)U — f

Goal: minimize structural compliance

mn
— Subject to a mass constraint E IOZ fU,L' < 144
)

Fach finite element is given a density 4
— Between zero (no material) and one (full material)
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Topology optimization example on cantilever beam

With a limited amount of material, find the
best cantilever beam that minimizes
compliance.

(c)

Red represents density of 1, blue represents density of 0. Design
Figures from Guest et al. [2]. evolution using continuation method.
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Design of lattice structures via multiscale topology optimization

= Just like the previous topology optimization problem min fT'U,
= Givens: domain and boundary condition r

= Problem: find the best distribution of rod radii

= Goal: minimize structural compliance SUbjeCt to

— Subject to a mass constraint

Kriu=f

= Each finite element has a fixed rod radius 7°;

— Lower and upper bound on the rod size n
— Based on what is physically possible to 3D print N

= Optimally designed structure that can be directly
created with additive manufacturing!
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Comparison of topology optimization with multiscale design

. o Classical topology optimization of MBB beam (with domain symmetry)
= Black is fully dense finite element cell

= White is no material

= For the truss lattices Octet truss beam

— Black being largest rod radius
— White no material (or smallest radius)

— Grey is some radius in between

ORC truss beam

Figures from Watts et al. [3]
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Multiscale topology optimization result in 3D

Optimal 3D MBB beam made of ORC truss microstructure. See the variation of
rod radii throughout the structure. Figure from Watts et al. [3].
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Machine learning model use in multiscale topology optimization

= Machine learning models are
used to describe the
microstructure scale

= Model of volume fraction as
function of rod radius

= Finite element stiffness as a
function of rod radius

— Use ML to predict homogenized
stiffness matrix

— As a function of the truss rod
radius

SYmm
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Homogenized ML material models

= Performed homogenization on various truss

microstructures Continuum equivalent

structural stiffness

—

Use a unit Young’s modus, but specified
Poisson’s ratio

— Allows us to switch between different isotropic
printing materials

— Reduces the number of unknowns by 1

011 012 013
= Most microstructures have an orthotropic Coo  Cos
response A Cs33
C(r,v) =
. . . (r V) C44
= ML model learns Voigt stiffness matrix as symm Cs
function of geometry and Poisson’s ratio I
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The ML material models are meant to be used in a design tool

= Assumptions: Linear static and small strain

= This is not going to give you highly resolved structural behavior
— No impacts, no failures

— Still need to run highly resolved simulations for these

= The design tool is meant to answer the question:
— Given a possible brick of material

— Where and how can we place unit cell microstructures
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Homogenization databases of various structures

TPMS Structure Orthotropic Number of data

Structures Orthotropic

fischer_koch_cp Yes 199
IsoTruss Yes

gyroid No 184

OctetTruss Yes
neovius 197
ORCTruss Yes
schoen_frd 199
RDTruss Yes
schoen_iwp 200
SCTruss Yes
schwarz_d 190
TOTruss Yes

schwarz_p 200
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Solid and hollow truss lattices

CORC OCtet

% 3
&

Solid

Hollow
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Implicit lattice representations

Solid
Hollow
3x3 Array
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Triply Periodic Minimal Surfaces (TPMS)

Gyroid (Schoen G) Primitive (Schwarz-P) Diamond (Schwarz-D) Neovius Schoen F-RD
Unit Cell
Generating Function = f(x,y,z) = sin(x)cos(y) + sin(y)cos(z) + sin(z)cos(x) f(x,y,z) = cos(x) + cos(y) + cos(z) f(x,y,z) = sin(x)sin(y)sin(z) + sin(x)cos(y)cos(z) = f(x,y,z) = 3(cos(x)+cos(y)+cos(z)) f(x,y,z) = cos(x)cos(y)cos(z) - 0.1(cos(2x)cos(2y)cos(2z))
+ cos(x)sin(y)cos(z) + cos(x)cos(y)sin(z) + 4cos(x)cos(y)cos(z) + 0.1(cos(2x)cos(2y) + cos(2y)cos(2z) + cos(2z)cos(2x))
. . Q";‘
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Enforcing that our ML models produce Symmetric Positive
Definite (SPD) matrices

= Stiffness matrix predictions from ML model ‘ ’ PYTOrCh

should be SPD

import torch.nn as nn
= Implemented SPD enforcement methods TRy T
from literature as “neural network layers”
hidden_size = 100
n_features = 2

out_shape = 6

— “spdlayers” improve model accuracy compared
to models that don’t enforce SPD [4]

in_shape = spdlayers.in_shape_from(out_shape)

= Model on the right:

— Two inputs (rod radius, Poisson ratio) model = nn.Sequential

_ _ _ nn.Linear(n_features, hidden_size),
— Outputs Voigt stiffness matrix (6 x 6) nn.Linear(hidden_size, in_shape),

— One hidden layer neural network, with SPD spdlayers.Cholesky(output_shape=out_shape)

enforcement

= https://github.com/LLNL/spdlayers
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https://github.com/LLNL/spdlayers

How does spdlayers work?

def forward(self, x):

= Cholesky decomposition [5] (' = LLT

Generate SPD tensors from x

— ML model predicts lower triangular form

Args:
— ”FIX” negative diagonal x (Tensor): Tensor to generate predictions for. Must have
iI? 2d shape of form (:, input_shape). If symmetry='anisotropic’,
— Do LL with positive diagonal L the expected
. ‘input_shape = sum([i for i in range(output_shape + 1)])'. If
- COde Shown on rlght symmetry="'orthotropic', then the expected 'input_shape=9".

Returns:
(Tensor): The predictions of the neural network. Will return
shape (:, output_shape, output_shape)

= Exponential map [6]

# enforce positive values for the diagonal

— Described as a tangent plane that is always SPD

x = torch.where(self.is_diag, self.positive_fun(x) + self.min_value, x)

# init a Zero lower triangle tensor

— Do eigenvalue decomposition

L = torch.zeros((x.shape[@], self.output_shape, self.output_shape),

— "FIX” negative eigenvalues AL

# populate the lower triangle tensor

— Reassemble ( ! with corrected eigenvalues and Hop celia by Gluct L) <
.. . LT = L.transpose(1, 2) # lower triangle transpose
Orlglnal elgenveCtorS out = torch.matmul(L, LT) # return the SPD tensor

return out
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Fitting ML model via Sobolev norm to ensure accurate
derivatives for topology optimization

= Derivates are important!
= Our ML material model must be differentiable for topology optimization

= ML model is trained to minimize the Sobolev norm [7]
— ML model parameters /8
— Hat denotes ML prediction
— Rod radius T°
— Voigt stiffness matrix C
— Sobolev weighting coefficient 771

oC(r) 9C(r)
or or H

m[;nHC’(?“) —C(r)|[+m|
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ML model woes

= For each microstructure we need ML models for
— Volume fraction
— Homogenized stiffness matrix
— Homogenized thermal conductivity
— Homogenized thermal expansion

= We need to train a lot of ML models
— Not found one single ML model to rule them all that didn’t sacrifice accuracy
— Training one ML model is easy, training LOTS of models is hard!

« Automation of this process is prone to soft failures
« One particular model/data gives a poor fit (go back and retrain these by hand)

— Neural networks have given more training pains
* Occasionally the neural network training fails

— Radial basis functions have some training pains
 Slower and bigger than Neural Networks
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How our ML knowledge changes over time

_——®— (Obtain more data

—8— (Constant Data

ML Model Accuracy

—
Time

. . (2748
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From training ML model to C++ production

= Leverage PyTorch’s Python to C++ persistence

= What we’ve proposed
— Train ML models in Python
« Rapid development and deployment
* New data, new ML techniques
— Save ML models as a single “.pt’ file
* Binary zip file
« Contains human readable metadata when extracted

— Load the .pt file in c++ with no Python dependencies

* Arbitrary models at runtime '
- Get derivatives of models #include // One-stop header.
« Using ‘libtorch’

torch::jit::script::Module module;

// Deserialize the ScriptModule from a file using
module = torch::jit::load( ) ;

. . ( "‘I
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Get derivatives of ML model at runtime

= Derivatives are important!

= Using PyTorch’s autodiff
— Don’t need to code derivatives for
each ML model

; 1 < n_jacob; i++)

- Gettlng derivatives Of out Wlth at::Tensor gradient = torch::autograd::grad({out.slice(
respect to inputs .
{inputs},
oC ()
a’r J.slice(1l, i, i+l) gradient.unsqueeze(

. L }
= This is getting implemented as a

LiDO operator (Kenny Swartz)
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Why have a hot swappable ML material models at runtime?

= As time goes on, we might get better ML techniques, or more data

= Can give the user a choice between
— High accuracy but high inference time
— Lower accuracy with faster inference time

= Quickly switch between microstructures at runtime

= Maybe you have a particular design situation that is starting to be expensive
— Quickly train a lower accuracy ML model that would be much cheaper in inference!

= Other benefits:
— Don’t have to implement each ML model architecture configuration in C++
— Less C++ code to write
— One unified interface
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Metadata into the .pt files that tells us about the ML model

= You can put extra stuff into |
"Software_versions": {

.pt files : "topoptml": "0.2.0",
_ "numpy": "1.20.3",
= Example of metadata.json ~ "scipy": "1.6.2",

on the right : "torch": "1.10.0",

— Human and machine readable } python": "3.7.11

. "Created_by_username": "jekell",
- { ) — —
Can access ‘metadata’ in "UTC_date™: "2022-03-24 23:02:43.478230",

c++at runtime f. "Model_info": {

"Name": "Radial_basis_one_layer_neural_network",
"input_size": 4,

"num_classes'": 10,

"output_dim": 1,

""hidden_size": 100

}
)

. . ( l“l
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Thoughts on C++ implementation of the ML material models...

| want your thoughts!

ML (neural network) is fast when you give a large batch of computation
— e.g. compute stiffness tensor for entire parallel mesh
— Could run into memory issues, memory overhead is ~ Batch_Size x Fattest_Hidden_Layer

ML is slow when you give only a single computation
— e.g. compute the stiffness tensor per integration point

ML model input:
— Multi-dimensional array
— Rod radii, Poisson’s ratio

ML model output:
— Multi-dimensional array
— Voigt stiffness matrix components
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Summary

= Coming up with designs to fully leverage additive manufacturing techniques is hard

= We want to use multiscale topology optimization to design structures that can be
directly 3D printed as lattices of microstructures

= Machine learning is one way to do multiscale topology optimization
= Homogenization stiffness matrix datasets for various microstructures

= Creating machine learning linear orthotropic material models for various structures

— Input: geometric rod radius and Poisson’s
— Output: Homogenized stiffness matrix

= Happy to hear you thoughts, comments, and suggestions!
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